RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 2025 Volume 65, Number 4, Pages 417–425 (Mi zvmmf11949)

General numerical methods

Approximation of the function and its derivative relating to the Hölder–Lipschitz class with their Fourier coefficients for a harmonically modulated argument

N. D. Kuz'michev

Ogarev Mordovia State University, 430005, Saransk, Russia

Abstract: The paper considers the proved theorems according to which any function and its derivative relating to the Hölder–Lipschitz class $C^\alpha(G)$ can be approximated with any pre-set accuracy by a finite sum of the dependences of the Fourier coefficients for a harmonically modulated function argument.

Key words: Hölder–Lipschitz class, function, function derivative, harmonically modulated argument, approximation, Fourier coefficient dependencies.

UDC: 519.65; 517.521

Received: 05.10.2024
Revised: 03.12.2024
Accepted: 04.02.2025

DOI: 10.31857/S0044466925040018


 English version:
Computational Mathematics and Mathematical Physics, 2025, 65:4, 663–673

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025