RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 2025 Volume 65, Number 6, Pages 1368–1379 (Mi zvmmf12025)

Papers published in the English version of the journal

Global well-posedness for the fractional magneto-micropolar equations in variable exponent Fourier–Besov spaces

Xiaochun Sun, Ruohong Ma, Fengjuan Li

Northwest Normal University, 730070, Lanzhou, China

Abstract: We focus on the Cauchy problem of the three-dimensional fractional magneto-micropolar equations in this paper. For small initial data, we prove the global well-posedness result in variable exponent Fourier–Besov Spaces. Our method relies on the main tools such as the Littlewood–Paley decomposition and the Fourier-localization method. Moreover, we obtain the Gevrey class regularity and time decay rate estimate of the solution.

Key words: fractional magneto-micropolar equations, global well-posedness, variable exponent Fourier–Besov spaces, Gevrey class regularity, decay estimates.

Received: 11.11.2024
Revised: 10.12.2024
Accepted: 13.12.2024

Language: English


 English version:
Computational Mathematics and Mathematical Physics, 2025, 65:6, 1368–1379


© Steklov Math. Inst. of RAS, 2025