RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 2025 Volume 65, Number 8, Pages 1351–1372 (Mi zvmmf12031)

Molecular Biophysics

On time-global solvability of the Cauchy problem for one nonlinear equation of the drift-diffusion model of a semiconductor

M. O. Korpusovab, V. M. Ozorninab, A. A. Paninab

a Lomonosov Moscow State University
b Peoples' Friendship University of Russia named after Patrice Lumumba, Moscow

Abstract: A Cauchy problem for a high-order nonlinear equation is considered. Existence, uniqueness, and time-global solvability in a weak sense are proven.

Key words: nonlinear equations of Sobolev type, destruction, blow-up, local solvability, nonlinear capacity, estimates of destruction time.

UDC: 517.538

Received: 28.11.2024
Accepted: 22.05.2025

DOI: 10.31857/S0044466925080041


 English version:
Computational Mathematics and Mathematical Physics, 2025, 65:8, 1848–1871

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025