RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 2025 Volume 65, Number 9, Pages 2087–2096 (Mi zvmmf12070)

Papers published in the English version of the journal

Recurrence relations for degenerate Bell and Dowling polynomials via boson operators

Taekyun Kima, Dae San Kimb

a Department of Mathematics, Kwangwoon University, 139-701, Seoul, Republic of Korea
b Department of Mathematics, Sogang University, 121-742, Seoul, Republic of Korea

Abstract: Spivey found a recurrence relation for the Bell numbers by using combinatorial method. The aim of this paper is to derive Spivey’s type recurrence relations for the degenerate Bell polynomials and the degenerate Dowling polynomials by using the boson annihilation and creation operators satisfying the commutation relation $aa^+-a^+a=1$. In addition, we derive a Spivey’s type recurrence relation for the $r$-Dowling polynomials.

Key words: degenerate Bell polynomials, degenerate Dowling polynomials, degenerate, $r$-Dowling polynomials, Boson operator.

Received: 04.03.2025
Revised: 27.05.2025
Accepted: 17.11.2025

Language: English


 English version:
Computational Mathematics and Mathematical Physics, 2025, 65:9, 2087–2096


© Steklov Math. Inst. of RAS, 2025