RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 2007 Volume 47, Number 11, Pages 1880–1897 (Mi zvmmf222)

This article is cited in 1 paper

Calculating the branch points of the eigenvalues of the Coulomb spheroidal wave equation

S. L. Skorokhodova, D. V. Khristoforovb

a Dorodnicyn Computing Center, Russian Academy of Sciences, ul. Vavilova 40, Moscow, 119991, Russia
b Faculty of Mechanics and Mathematics, Moscow State University, Leninskie gory, Moscow, 119992, Russia

Abstract: A method for computing the eigenvalues $\lambda_{mn}(b,c)$ and the eigenfunctions of the Coulomb spheroidal wave equation is proposed in the case of complex parameters $b$ and $c$. The solution is represented as a combination of power series expansions that are then matched at a single point. An extensive numerical analysis shows that certain $b_s$ and $c_s$ are second-order branch points for $\lambda_{mn}(b,c)$ with different indices $n_1$ and $n_2$, so that the eigenvalues at these points are double. Padé approximants, quadratic Hermite–Padé approximants, the finite element method, and the generalized Newton method are used to compute the branch points $b_s$ and $c_s$ and the double eigenvalues to high accuracy. A large number of these singular points are calculated.

Key words: Coulomb spheroidal wave functions, computation of eigenvalues, branch point of eigenvalues, Padé approximants, quadratic approximations, generalized Newton method.

UDC: 519.651

Received: 19.04.2007
Revised: 23.05.2007


 English version:
Computational Mathematics and Mathematical Physics, 2007, 47:11, 1802–1818

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025