RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 2007 Volume 47, Number 11, Pages 1949–1957 (Mi zvmmf226)

This article is cited in 1 paper

Conservative numerical method for solving the averaged Boltzmann equation

V. A. Rykov, D. A. Shil'tsov

Dorodnicyn Computing Center, Russian Academy of Sciences, ul. Vavilova 40, Moscow, 119991, Russia

Abstract: A method is proposed for averaging the Boltzmann kinetic equation with respect to transverse velocities. A system of two integro-differential equations for two desired functions depending only on the longitudinal velocity is derived. The gas particles are assumed to interact as absolutely hard spheres. The integrals in the equations are double. The reduction in the number of variables in the desired functions and the low multiplicity of the integrals ensure the computational efficiency of the averaged equations. A numerical method of discrete ordinates is developed that effectively solves the gas relaxation problem based on the averaged equations. The method is conservative, and the number of particles, momentum, and energy are conserved automatically at every time step.

Key words: кинетическое уравнение Больцмана, осреднение кинетического уравнения, консервативная разностная схема.

UDC: 519.634

Received: 11.01.2007
Revised: 25.04.2007


 English version:
Computational Mathematics and Mathematical Physics, 2007, 47:11, 1867–1874

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025