RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 2007 Volume 47, Number 7, Pages 1158–1178 (Mi zvmmf276)

This article is cited in 2 papers

Singular problem for a third-order nonlinear ordinary differential equation arising in fluid dynamics

A. L. Duischkoa, N. B. Konyukhovaa, A. I. Sukovb

a Dorodnicyn Computing Centre, Russian Academy of Sciences, ul. Vavilova 40, Moscow, 119991, Russia
b Moscow State Technological University "Stankin", Vadkovskii per. 3a, Moscow, 101472, Russia

Abstract: Results concerning singular Cauchy problems, smooth manifolds, and Lyapunov series are used to correctly state and analyze a singular “initial-boundary” problem for a third-order nonlinear ordinary differential equation defined on the entire real axis. This problem arises in viscous incompressible fluid dynamics and describes self-similar solutions to the boundary layer equation for the stream function with a zero pressure gradient (plane-parallel flow in a mixing layer). The analysis of the problem suggests a simple numerical method for its solution. Numerical results are presented.

Key words: boundary layer equations, self-similar solution, third-order autonomous nonlinear ODE, singular problem on the entire real line, regular and singular solutions.

UDC: 519.624.3

Received: 12.05.2005
Revised: 01.11.2006


 English version:
Computational Mathematics and Mathematical Physics, 2007, 47:7, 1108–1128

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024