RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 1990 Volume 30, Number 11, Pages 1625–1637 (Mi zvmmf3171)

Computational complexity of generalized $K_N$-convolutions and the fast Vandermonde transform algorithm

A. M. Krot

Minsk

Abstract: A lemma on the minimum multiplicative complexity of the reduction operation for polynomials whose coefficients are not in the field of constants in Winograd's sense is proved. The lemma is used to prove theorems on the minimum number of multiplications necessary to compute the generalized $K_N$-convolution and on the existence of a fast Vandermonde transform (FVT) algorithm. An $O(2N\log_2^2N)$ $N$-point algorithm is synthesized.

UDC: 519.677

MSC: Primary 65F30; Secondary 65T50, 65Y20

Received: 22.06.1989


 English version:
USSR Computational Mathematics and Mathematical Physics, 1990, 30:6, 17–26

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025