RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 1990 Volume 30, Number 8, Pages 1123–1132 (Mi zvmmf3212)

This article is cited in 4 papers

Optimal cubature formulae for computing many-dimensional integrals of functions in the class $Q_{r,\gamma}(\Omega,1)$

I. V. Boykov

Penza

Abstract: Order optimal cubature formulae are constructed for evaluating integrals of functions in class $Q_{r,\gamma}(\Omega,1)$, where $\Omega=[-1,1]^l$, $l\ge2$. Asymptotically optimal quadrature formulae are constructed for evaluating integrals of functions in $Q_{r,\gamma}(\Omega,1)$ where $\Omega=[-1,1]$.

UDC: 519.644

MSC: Primary 41A55; Secondary 41A63

Received: 30.06.1988
Revised: 24.07.1989


 English version:
USSR Computational Mathematics and Mathematical Physics, 1990, 30:4, 110–117

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024