RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 1990 Volume 30, Number 2, Pages 254–269 (Mi zvmmf3308)

This article is cited in 4 papers

Asymptotic behaviour of rapidly oscillating contrasting spatial structures

S. A. Kashchenko

Yaroslavl'

Abstract: The asymptotic behaviour of equilibria that rapidly oscillate in the spatial coordinate in a system of two nonlinear parabolic equations with a sufficiently small diffusion coefficient in one of them is investigated. The normalization method is applied to show that the local dynamics of the original system with a small parameter multiplying one of the high-order derivatives is determined by the non-local behaviour of the solutions of a family of special boundary-value problems that are independent of the small parameter.

UDC: 517.958

MSC: Primary 35B25; Secondary 35B30, 35K57

Received: 22.12.1988


 English version:
USSR Computational Mathematics and Mathematical Physics, 1990, 30:1, 186–197

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025