RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 2006 Volume 46, Number 12, Pages 2228–2234 (Mi zvmmf369)

This article is cited in 2 papers

Solution to the boundary value problem for an arbitrary elliptic operator subject to a radiation condition

A. N. Bogolyubov, M. D. Malykh, Yu. V. Mukhartova

Faculty of Physics, Moscow State University, Leninskie gory, Moscow, 119992, Russia

Abstract: It is shown that the generalized Fourier transform can be extended to an arbitrary elliptic operator in a cylindrical domain with a Robin boundary condition. In this case, the existence of the Fourier image is a completely correct radiation condition determining a solution to the problem that is a superposition of waves traveling away from the source.

Key words: boundary value problem for an arbitrary elliptic operator, radiation condition, generalized Fourier transform, waves traveling outward from a source.

UDC: 519.633

Received: 26.05.2006


 English version:
Computational Mathematics and Mathematical Physics, 2006, 46:12, 2129–2135

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025