RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 2006 Volume 46, Number 10, Pages 1809–1821 (Mi zvmmf400)

This article is cited in 16 papers

Chaos phenomena in a circle of three unidirectionally connected oscillators

S. D. Glyzina, A. Yu. Kolesova, N. Kh. Rozovb

a Faculty of Mathematics, Yaroslavl State University, Sovetskaya ul. 14, Yaroslavl, 150000, Russia
b Faculty of Mechanics and Mathematics, Moscow State University, Leninskie gory, Moscow, 119992, Russia

Abstract: A method is proposed for designing chaotic oscillators. Mathematically, three so-called partial oscillators $S_j$ ($j=1,2,3$) are chosen, each of which is modeled by a nonlinear system of ordinary differential equations with a single attractor—an equilibrium or a cycle (the case $S_1=S_ 2=S_3$ is not excluded). It is shown that, when unidirectionally connected in a circle of the form однонаправленно связанными в кольцо вида
$$ \xymatrix{ &S_1\ar[rd]& \\ S_3\ar[ru]&&S_2\ar[ll] } $$
with suitably chosen parameters, these oscillators can exhibit a joint chaotic behavior.

Key words: self-oscillations, oscillators, chaotic attractor, normal form.

UDC: 519.624.2

Received: 09.03.2006


 English version:
Computational Mathematics and Mathematical Physics, 2006, 46:10, 1724–1736

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024