Abstract:
Algorithms for solving the two-dimensional combustion problem for premixed flames are proposed and examined. The solution method is based on splitting into convective and diffusion parts according to the processes involved. A high-resolution explicit quasi-monotone scheme with flux correction is used for the hyperbolic part. For the parabolic part, the scheme is conservative and the source in the heat equation is set to be positive; i.e., the scheme ensures that the different thermodynamic consequences of the original equations hold; therefore, the scheme is thermodynamically conditioned. The applicability of the scheme to the full and purely gasdynamic problems is examined under various types of initial conditions and with various flux limiters. Numerical results are presented for one-and two-dimensional problems, including the Frank-Kamenetskii classical problem in two dimensions. The flame is shown to become turbulent in sufficiently wide pipes.