RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 2006 Volume 46, Number 7, Pages 1184–1194 (Mi zvmmf437)

This article is cited in 2 papers

A first-order continuous method for the Antipin regularization of monotone variational inequalities in a Banach space

I. P. Ryazantseva

Nizhni Novgorod State Technical University, ul. Minina 24, Nizhni Novgorod, 603600, Russia

Abstract: The concept of a generalized projection operator onto a convex closed subset of a Banach space is modified. This operator is used to construct a first-order continuous method for the Antipin regularization of monotone variational inequalities in a Banach space. Sufficient conditions for the convergence of the method are found.

Key words: monotone variational inequalities in a Banach space, first-order continuous method.

UDC: 519.642.8

Received: 14.12.2005


 English version:
Computational Mathematics and Mathematical Physics, 2006, 46:7, 1121–1131

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024