Abstract:
Newton's method is most frequently used to find the roots of a nonlinear algebraic equation. The convergence domain of Newton's method can be expanded by applying a generalization known as the continuous analogue of Newton's method. For the classical and generalized Newton methods, an effective root-finding technique is proposed that simultaneously determines root multiplicity. Roots of high multiplicity (up to 10) can be calculated with a small error. The technique is illustrated using numerical examples.