Abstract:
A mathematical model of tumor growth therapy is considered. The total amount of a drug is bounded and fixed. The problem is to choose an optimal therapeutic strategy, i.e., to choose an amount of the drug permanently affecting the tumor that minimizes the number of tumor cells by a given time. The problem is solved by the dynamic programming method. Exact and approximate solutions to the corresponding Hamilton–Jacobi–Bellman equation are found. An error estimate is proved. Numerical results are presented.