Abstract:
A modification of the classical needle variation, namely, the so-called two-parameter variation of controls is proposed. The first variation of a functional is understood as a repeated limit. It is shown that the modified needle variation can be effectively used to derive necessary optimality conditions for a rather wide class of optimal control problems involving partial differential equations with weak solutions. Specifically, the two-parameter variation is used to obtain necessary optimality conditions in the form of a maximum principle for the optimal control of divergent hyperbolic equations.
Key words:optimal control problem, partial differential equations, Pontryagin's maximum principle, first variation of a functional.