RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 2009 Volume 49, Number 6, Pages 1119–1130 (Mi zvmmf4710)

This article is cited in 4 papers

On the explicit parametric description of waves in periodic media

A. V. Vinogradova, A. V. Popovb, D. V. Prokopovichbc

a Lebedev Physical Institute, Russian Academy of Sciences, Leninskii pr. 53, Moscow, 119991, Russia
b Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation, Russian Academy of Sciences, Troitsk, Moscow oblast, 142190, Russia
c Fiber Optics Research Center, Russian Academy of Sciences, ul. Vavilova 38, Moscow, 119991, Russia

Abstract: A method for the parameterization of the one-dimensional wave equation is proposed that makes it possible to find its solution by quadratures under an arbitrary dependence of the refraction index on the current wave phase. The form of the solution found is used to investigate the structure of the wave function for a periodic refraction index. Explicit expressions for the fundamental system of solutions and for the Floquet index are obtained. Examples of applying the proposed method to the optimal synthesis of multilayer interference mirrors and Bragg waveguides are discussed.

Key words: one-dimensional wave equation, parametric solution, periodic refraction index, parametric resonance, optimal synthesis of multilayer waveguides.

UDC: 519.634

Received: 28.03.2008
Revised: 20.11.2008


 English version:
Computational Mathematics and Mathematical Physics, 2009, 49:6, 1069–1079

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024