Abstract:
A method based on wavelet transforms is proposed for finding classical solutions to initial-boundary value problems for second-order quasilinear parabolic equations. For smooth data, the convergence of the method is proved and the convergence rate of an approximate weak solution to a classical one is estimated in the space of wavelet coefficients. An approximate weak solution of the problem is found by solving a nonlinear system of equations with the help of gradient-type iterative methods with projection onto a fixed subspace of basis wavelet functions.
Key words:weak and approximate weak solutions to initial-boundary value problems for parabolic equations, multiresolution analysis, wavelet basis, gradient-type iterative method, irregular operator equation.