RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 2010 Volume 50, Number 1, Pages 131–145 (Mi zvmmf4816)

This article is cited in 19 papers

Hessian-free metric-based mesh adaptation via geometry of interpolation error

A. Agouzala, K. N. Lipnikovb, Yu. V. Vassilevskic

a Université de Lyon 1, Laboratoire d’Analyse Numerique 43, Bd du 11 Novembre 1918, Villeurbanne Cedex, France
b Los Alamos National Laboratory, Theoretical Division MS-B284, Los Alamos, NM 87545, USA
c Institute of Numerical Mathematics of the Russian Academy of Sciences Gubkina 8, Moscow, 119333, Russia

Abstract: The article presents analysis of a new methodology for generating meshes minimizing $L^p$-norms of the interpolation error or its gradient, $p>0$. The key element of the methodology is the construction of a metric from node-based and edge-based values of a given function. For a mesh with $N_h$ triangles, we demonstrate numerically that $L^\infty$-norm of the interpolation error is proportional to $N_h^{-1}$ and $L^\infty$-norm of the gradient of the interpolation error is proportional to $N_h^{-1/2}$. The methodology can be applied to adaptive solution of PDEs provided that edge-based a posteriori error estimates are available.

Key words: optimal mesh, interpolation error, metric based adaptation.

UDC: 519.63

Received: 18.11.2008
Revised: 27.07.2009

Language: English


 English version:
Computational Mathematics and Mathematical Physics, 2010, 50:1, 124–138

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025