RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 2010 Volume 50, Number 4, Pages 679–698 (Mi zvmmf4861)

This article is cited in 7 papers

A perturbed boundary eigenvalue problem for the Schrödinger operator on an interval

I. Kh. Khusnullin

Bashkir State Pedagogical University, ul. Oktyabr'skoi revolyutsii 3a, Ufa, 450000 Bashkortostan, Russia

Abstract: A perturbed two-parameter boundary value problem is considered for a second-order differential operator on an interval with Dirichlet conditions. The perturbation is described by the potential $\mu^{-1}V((x-x_0)\varepsilon^{-1})$, where $0<\varepsilon\ll1$ and $\mu$ is an arbitrary parameter such that there exists $\delta>0$ for which $\varepsilon/\mu=o(\varepsilon^\delta)$. It is shown that the eigenvalues of this operator converge, as $\varepsilon\to0$, to the eigenvalues of the operator with no potential. Complete asymptotic expansions of the eigenvalues and eigenfunctions of the perturbed operator are constructed.

Key words: second-order differential operator, singular perturbation, eigenvalue, asymptotics.

UDC: 519.634

Received: 10.09.2009


 English version:
Computational Mathematics and Mathematical Physics, 2010, 50:4, 646–664

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024