RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 2006 Volume 46, Number 4, Pages 667–682 (Mi zvmmf487)

This article is cited in 6 papers

Asymptotics of eigenelements of boundary value problems for the Schrödinger operator with a large potential localized on a small set

A. R. Bikmetov

Bashkortostan State Pedagogical University, ul. Oktyabrskoi Revolyutsii 3a, Ufa, 450000, Bashkortostan, Russia

Abstract: Asymptotics of eigenelements of a singularly perturbed boundary value problem for the three-dimensional Schrödinger operator is constructed in a bounded domain with the Dirichlet and Neumann boundary condition. The perturbation is described by a large potential whose support contracts into a point. In the case of the Dirichlet boundary conditions, this problem corresponds to a potential well with infinitely high walls and a narrow finite peak at the bottom.

Key words: three-dimensional Schrödinger operator, eigenvalues, singular perturbation.

UDC: 519.634

Received: 18.07.2005


 English version:
Computational Mathematics and Mathematical Physics, 2006, 46:4, 636–650

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024