RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 2010 Volume 50, Number 5, Pages 876–893 (Mi zvmmf4877)

This article is cited in 1 paper

Solution blow-up for a new stationary Sobolev-type equation

M. O. Korpusov, A. G. Sveshnikov

Faculty of Physics, Moscow State University, Moscow, 119992 Russia

Abstract: A new nonlinear stationary Sobolev-type equation with a parameter $\eta\in\mathbb{R}^1$ is derived. For $\eta>0$, global solvability in the weak generalized sense is proved in the entire waveguide $\mathbb{S}\otimes\mathbb{R}_+^1$. For $\eta<0$, the strong generalized solution is shown to blow up in a certain waveguide cross section $z=R_0>0$. An upper bound for $R_0$ in terms of the original parameters of the problem is obtained.

Key words: new stationary Sobolev-type equations, existence and blow-up conditions for strong generalized solutions, waveguide theory.

UDC: 519.63

Received: 30.11.2009


 English version:
Computational Mathematics and Mathematical Physics, 2010, 50:5, 831–847

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025