RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 2010 Volume 50, Number 5, Pages 908–922 (Mi zvmmf4879)

This article is cited in 1 paper

Convergence rate estimates for a projection-difference scheme as applied to the nonstationary stokes equation in cylindrical coordinates

E. I. Aksenova

Praktika Law Firm, ul. Delegatskaya 11, Moscow, 127473 Russia

Abstract: An implicit projection-difference scheme is constructed for the nonstationary Stokes equation in cylindrical coordinates. No axial symmetry is assumed. Under minimal assumptions about the initial data, convergence rate estimates are obtained that are uniform in the inner radius of the domain of order $(\tau^{1/2}+h)^\alpha$, $\alpha=1$$2$. The results remain valid for domains with no hole and in the case of Cartesian coordinates.

Key words: nonstationary Stokes equation, cylindrical coordinates, domain with a small hole, nonsmooth data, implicit projection-difference scheme, convergence rate estimate.

UDC: 519.634

Received: 17.10.2008
Revised: 08.04.2009


 English version:
Computational Mathematics and Mathematical Physics, 2010, 50:5, 862–876

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024