RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 2009 Volume 49, Number 1, Pages 3–13 (Mi zvmmf49)

This article is cited in 10 papers

Error estimates in $S_p$ for cubature formulas exact for Haar polynomials in the two-dimensional case

K. A. Kirillov, M. V. Noskov

Siberian Federal University, ul. Kirenskogo 26, Krasnoyarsk, 660074, Russia

Abstract: On the spaces $S_p$, an upper estimate is found for the norm of the error functional $\delta_N(f)$ of cubature formulas possessing the Haar $d$-property in the two-dimensional case. An asymptotic relation is proved for $\|\delta_N(f)\|_{S_p^*}$ with the number of nodes $N\sim 2^d$, where $d\to\infty$. For $N\sim 2^d$ with $d\to\infty$, it is shown that the norm of $\delta_N$ for the formulas under study has the best convergence rate, which is equal to $N^{-1/p}$.

Key words: cubature formulas in the space of Haar functions, error estimates for cubature formulas, estimate for the best convergence rate.

UDC: 519.644.7

Received: 10.04.2008


 English version:
Computational Mathematics and Mathematical Physics, 2009, 49:1, 1–11

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024