RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 2006 Volume 46, Number 3, Pages 445–456 (Mi zvmmf501)

This article is cited in 1 paper

Efficient three-level scheme for parabolic equations in cylindrical coordinates in a region with a small hole

E. I. Aksenova

Moscow Mezhregion Bar, Poluyaroslavskii per. 3/5, Moscow, 105120, Russia

Abstract: An efficient three-level scheme for parabolic equations in cylindrical coordinates is constructed in a region with a small hole. No axial symmetry is assumed. The convergence rate of the scheme is estimated under minimum requirements on the initial data. The estimates are uniform with respect to a small parameter – the inner diameter of the region. The order of convergence $\tau+h^2$, $\tau^{1/2}+h$, $\tau+h$, depending on the smoothness of the data.

Key words: parabolic boundary-value problems, cylindrical coordinates, region with a small hole, efficient three-level scheme, convergence rate estimate.

UDC: 519.639

Received: 04.07.2003
Revised: 05.05.2005


 English version:
Computational Mathematics and Mathematical Physics, 2006, 46:3, 425–436

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024