RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 1979 Volume 19, Number 5, Pages 1149–1161 (Mi zvmmf5308)

This article is cited in 10 papers

The solution of singular integral equations by approximate projection methods

A. V. Dzhishkariani

Tbilisi

Abstract: The approximate solution of singular equations of the 1st and 2nd kinds, when the line of integration is a segment, is considered. By contraction of the domain of definition or range of values of the operator, the one-to-one property of the mapping is established. Versions of the Bubnov-Galerkin method are used for the approximation solution. Chebyshev and Jacobi polynomials are used as coordinate elements. It is shown that the algebraic system is uniquely solvable for fairly large $n$, and that the approximate solutions converge to the exact solution in spaces with a weight. The process is stable.

UDC: 519.642

MSC: Primary 65R20; Secondary 45E05

Received: 04.07.1978


 English version:
USSR Computational Mathematics and Mathematical Physics, 1979, 19:5, 61–74

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025