RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 1979 Volume 19, Number 3, Pages 652–664 (Mi zvmmf5334)

Angular potential for solving an elliptic equation with variable coefficients

P. N. Vabishchevich, S. A. Gabov

Moskva

Abstract: The theory of the angular potential is constructed for $k$-harmonic functions on the plane, i.e. for regular solutions of the equation $div(k(M)~grad~u)=0$. An example is given of application of the results to the construction of a closed solution of the problem on the jump of directional derivatives of $k$-harmonic functions.

UDC: 517.956.224

MSC: Primary 35J15; Secondary 35A08, 31A15, 31A35, 31B35

Received: 04.04.1978


 English version:
USSR Computational Mathematics and Mathematical Physics, 1979, 19:3, 95–109

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024