RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 1979 Volume 19, Number 4, Pages 961–969 (Mi zvmmf5343)

The Monte Carlo solution of a boundary value problem for the metaharmonic equation

K. K. Sabelfeld

Novosibirsk

Abstract: An algorithm of the Monte Carlo method is constructed for solving the metaharmonic equation (1). A system of integral equations of the second kind is derived for the functions $\delta^ku(x)$, $k = 0, 1,..., n-1$. It is shown that if the singularities of the kernels are included in the transition density of the simulated Markov chain, the Neumann series for this system converges, which enables the Monte Carlo method to be used. The case $n=2$, $x\in R^m$, important in the theory of plasticity is discussed in detail.

UDC: 519.245, 519.63

MSC: Primary 65N99; Secondary 65C05, 31B30

Received: 13.02.1978
Revised: 20.07.1978


 English version:
USSR Computational Mathematics and Mathematical Physics, 1979, 19:4, 173–182

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025