RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 2005 Volume 45, Number 9, Pages 1630–1638 (Mi zvmmf599)

This article is cited in 1 paper

Resonances and trapped modes in a quantum waveguide

A. A. Arsen'ev

M. V. Lomonosov Moscow State University, Faculty of Physics

Abstract: Properties of the eigenfunctions of the continuous spectrum of a self-adjoint differential second-order operator in a cylinder are investigated. It is proved that the eigenfunctions of the continuous spectrum are analytic with respect to the spectral parameter near the eigenvalues embedded in the continuous spectrum, and any eigenvalue embedded in the continuous spectrum is a removable singular point for the corresponding eigenfunctions.

Key words: resonances and trapped modes, quantum waveguides, eigenvalue problem.

UDC: 519.6:517.958:621.378.8

Received: 04.02.2005


 English version:
Computational Mathematics and Mathematical Physics, 2005, 45:9, 1573–1581

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025