RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 2005 Volume 45, Number 9, Pages 1651–1676 (Mi zvmmf601)

This article is cited in 1 paper

Analytic–numerical investigation of the nonlinear boundary value problem for a superconducting plate in a magnetic field

A. L. Duischkoa, G. F. Zharkovb, N. B. Konyukhovaa, S. V. Kurochkina

a Dorodnicyn Computational Center, Russian Academy of Sciences, ul. Vavilova 40, Moscow, 119991, Russia
b P. N. Lebedev Physical Institute, Russian Academy of Sciences

Abstract: An analytic-numerical analysis of the one-dimensional boundary value problem for the Ginzburg–Landau equations is presented. The problem describes the stationary states of an infinite superconducting plate of finite thickness in a magnetic field. The emphasis is on the examination of the dynamic stability of solutions in the framework of linear perturbation theory.

Key words: superconducting plate in a magnetic field, Ginzburg–Landau theory, ordinary differential equations, boundary value problem, stability of solutions, accompanying eigenvalue problem, analytic–numerical investigation.

UDC: 519.63

Received: 28.01.2005


 English version:
Computational Mathematics and Mathematical Physics, 2005, 45:9, 1593–1617

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024