RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 2008 Volume 48, Number 12, Pages 2107–2112 (Mi zvmmf65)

This article is cited in 9 papers

Newton's method as a tool for finding the eigenvalues of certain two-parameter (multiparameter) spectral problems

B. M. Podlevskii

Institute of Applied Mathematics and Mechanics, National Academy of Sciences of Ukraine, ul. Naukova 3-b, Lvov, 79000, Ukraine

Abstract: An iterative algorithm is examined for finding the eigenvalues of the two-parameter (multiparameter) algebraic eigenvalue problem. This algorithm uses Newton's method and an efficient numerical procedure for differentiating determinants. Some numerical examples are given.

Key words: two-parameter (multiparameter) eigenvalue problems, Newton's method, determinant differentiation.

UDC: 519.614

Received: 15.11.2007
Revised: 20.05.2008


 English version:
Computational Mathematics and Mathematical Physics, 2008, 48:12, 2140–2145

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024