RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 2008 Volume 48, Number 12, Pages 2129–2140 (Mi zvmmf68)

This article is cited in 8 papers

On the best parametrization

E. B. Kuznetsov

Moscow Aviation Institute (State University), sh. Volokolamskoe 4, Moscow, 125993, Russia

Abstract: The numerical solution to a system of nonlinear algebraic or transcendental equations with several parameters is examined in the framework of the parametric continuation method. Necessary and sufficient conditions are proved for choosing the best parameters, which provide the best condition number for the system of linear continuation equations. Such parameters have to be sought in the subspace tangent to the solution space of the system of nonlinear equations. This subspace is obtained if the original system of nonlinear equations is solved at the various parameter values from a given set. The parametric approximation of curves and surfaces is considered.

Key words: system of nonlinear equations with parameters, best parameters, best parametrization of curves and surfaces.

UDC: 519.62

Received: 15.11.2007


 English version:
Computational Mathematics and Mathematical Physics, 2008, 48:12, 2162–2171

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024