RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 2005 Volume 45, Number 2, Pages 204–211 (Mi zvmmf697)

This article is cited in 2 papers

A note on the convergence of nonstationary finite-difference analogues

V. Hristova, A. I. Ilievb, N. V. Kyurkchieva

a 1113 Bulgaria, Sofia, Acad. G. Bonchev Str., bl. 8, Institute of Mathematics and Informatics, Bulgarian Academy of Science
b 4000 Bulgaria, Plovdiv, 24 Tsar Assen Str., University of Plovdiv, Faculty of Mathematics and Informatics

Abstract: An efficient modification of a finite-difference analogue of Halley's method is proposed. An iterative procedure ensures that the approximations converge to the desired root of the nonlinear equation $f(x)=0$.

Key words: numerical solution of nonlinear equations, iterative convergence method.

UDC: 519.615.5

Received: 26.02.2004
Revised: 04.08.2004

Language: English


 English version:
Computational Mathematics and Mathematical Physics, 2005, 45:2, 194–201

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024