RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 1961 Volume 1, Number 2, Pages 224–245 (Mi zvmmf8040)

This article is cited in 3 papers

On finding the asymptotes to the solutions of short-wave diffraction problems

A. Ya. Povznera, I. V. Sukharevskiib

a Moscow
b Khar'kov

Abstract: We use the following notation: $x,y,s$ a are the radius vectors of points in the three-dimensional region $D$ or on the boundary $S$ of this region; $|x-s|$ is the distance between the points $x$ and $s$; $\partial s$, $\partial s_j$ is an element of area of the surface $S$; $\mathbf n$ is the orthonormal to $S$ going out of $D$; $u^+(x)$ is the limit of the function $u(y)$ as the point y of $D$ tends to the point $x$ on the surface $S$; $(\partial u/\partial n)^+$ is the boundary value of the normal derivative passing into $S$ from the region $D$; $u^-$, $(\partial u/\partial n)^-$; have analogous meanings in passing into $S$ from the other side of the surface.

Received: 19.10.1960


 English version:
USSR Computational Mathematics and Mathematical Physics, 1962, 1:2, 249–276

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025