Abstract:
The procedure of measuring the intraocular pressure by an optical analyzer is numerically simulated. The cornea and the sclera are considered as axisymmetrically deformable shells of revolution with fixed boundaries; the space between these shells is filled with incompressible fluid. Nonlinear shell theory is used to describe the stressed and strained state of the cornea and sclera. The optical system is calculated from the viewpoint of the geometrical optics. Dependences between the pressure in the air jet and the area of the surface reflecting the light into a photodetector are obtained. The shapes of the regions on the cornea surface are found from which the reflected light falls on the photodetector. First, the light is reflected from the center of the cornea, but then, as the cornea deforms, the light is reflected from its periphery. The numerical results make it possible to better interpret the measurement data.