RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 2011 Volume 51, Number 5, Pages 913–919 (Mi zvmmf9340)

This article is cited in 5 papers

Three-dimensional evolution of the boundary of a polluted area in a bounded piecewise homogeneous porous material

D. N. Nikol'skii

Orel State University, Komsomol'skaya ul. 95, Orel, 302026 Russia

Abstract: A mathematical model describing the three-dimensional evolution of a liquid–liquid interface in a piecewise homogeneous porous medium containing impermeable rock and a basin with a free liquid is constructed using the Leibenzon–Muskat model. As an example, the dispersion of pollutants from a point source is numerically simulated.

Key words: three-dimensional evolution of liquid–liquid interface, boundary value problems in the theory of flows in porous media, method of discrete vortical frames, dispersion of soil pollutants.

UDC: 519.634

Received: 15.06.2010


 English version:
Computational Mathematics and Mathematical Physics, 2011, 51:5, 855–861

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025