RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 2012 Volume 52, Number 5, Pages 775–783 (Mi zvmmf9707)

This article is cited in 6 papers

Conditions for unique solvability of the matrix equation $AX+X^\ast B=C$

Yu. O. Vorontsov, Kh. D. Ikramov

M. V. Lomonosov Moscow State University, Faculty of Computational Mathematics and Cybernetics

Abstract: Conditions for the unique solvability of the matrix equation $AX+X^\ast B=C$ are formulated in terms of the eigenvalues and the Kronecker structure of the matrix pencil $A+\lambda B^\ast$ associated with this equation.

Key words: Sylvester matrix equations, equivalence transformations, regular pencil, Weierstrass canonical form, singular pencil, Kronecker canonical form.

UDC: 519.61


 English version:
Computational Mathematics and Mathematical Physics, 2012, 52:5, 665–673

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025