RUS
ENG
Full version
JOURNALS
// Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
// Archive
Zh. Vychisl. Mat. Mat. Fiz.,
2012
Volume 52,
Number 5,
Pages
775–783
(Mi zvmmf9707)
This article is cited in
6
papers
Conditions for unique solvability of the matrix equation
$AX+X^\ast B=C$
Yu. O. Vorontsov
,
Kh. D. Ikramov
M. V. Lomonosov Moscow State University, Faculty of Computational Mathematics and Cybernetics
Abstract:
Conditions for the unique solvability of the matrix equation
$AX+X^\ast B=C$
are formulated in terms of the eigenvalues and the Kronecker structure of the matrix pencil
$A+\lambda B^\ast$
associated with this equation.
Key words:
Sylvester matrix equations, equivalence transformations, regular pencil, Weierstrass canonical form, singular pencil, Kronecker canonical form.
UDC:
519.61
Fulltext:
PDF file (187 kB)
References
Cited by
English version:
Computational Mathematics and Mathematical Physics, 2012,
52
:5,
665–673
Bibliographic databases:
©
Steklov Math. Inst. of RAS
, 2025