RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 2013 Volume 53, Number 8, Pages 1387–1401 (Mi zvmmf9908)

This article is cited in 6 papers

Recurrence formulas for long wavelength asymptotics in the problem of shear flow stability

S. V. Revinaab

a Southern Federal University, Rostov-on-Don
b South Mathematical Institute of VSC RAS

Abstract: Recurrence formulas are obtained for the kth term of the long wavelength asymptotics in the stability problem for two-dimensional viscous incompressible shear flows with a nonzero average. It is shown that the critical eigenvalues are odd functions of the wave number, while the critical values of the viscosity are even functions. If the deviation of the velocity from its period-average value is an odd function of spatial variable, the eigenvalues can be found exactly.

Key words: stability of two-dimensional viscous flows, Kolmogorov flow, long wavelength asymptotics, recurrence formulas.

UDC: 519.634

Received: 18.12.2012

DOI: 10.7868/S0044466913060173


 English version:
Computational Mathematics and Mathematical Physics, 2013, 53:8, 1207–1220

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024