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Abstract. We discuss several problems of batteries and fuel cells from the point of view of
nonlinear dynamics and review some earlier work on modeling this class of systems as well as
new developments. We consider batteries and fuel cells as active nonlinear electrochemical circuits
with properties depending on many factors as load, age, load history etc. We show that most

satisfactory battery regimes are reached by coupling of an odd number of circuits in opposite phases.
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chemical into electrical energy in dependence on the work load, the life cycles of batteries, including
installation, work under load, aging and decay. Further we discuss specific properties of managing
— battery networks, in particular the cycle of replacing of old batteries by fresh ones including the
optimization of this cycle. The last part of this work is merely a list of open tasks to be elaborated.
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AHHOTaLMA. B HacTosLel cTaTbe 06CyX/aloTC HekoTOpble NPobNeMbl HaTapeiiHbIX CMCTEM W TOMAMBHBIX 3NEMEHTOB C TOUKW 3peHUs Heu-
HeliHOWM AMHAMMKW, 1 NPUBOAWTCA 0630p psAa paHHUX PaboT No MoAeNMPOBaHII0 3TOTO KN1acca CMCTeM, a Takke HOBble pa3paboTku. batapen
1 TONMBHbIE 3NEMEHTBI PACCMATPUBAIOTCA KaK aKTUBHBbIE HENMHEIHbIE 3NEKTPOXUMUYECKME LIeNK, CBOMCTBA KOTOPbIX 3aBUCST OT MHOTUX dak-
TOPOB, TakuX KaK Harpy3Ka, cTrapeHue, UCTOpUs Harpysky u T. . Moka3bIBaeTcs, YTo Hanbonee yA0BNETBOPUTENbHbIE PEXIMbI PaboTbl 6aTapeil
AOCTUTAOTCA MyTeM COEAMHEHMS HEYETHOTO YNCNa Lieneid B NPOTMBOMONOXHbIX pasax. OcobbIMU MOMeEHTaMM 0BCYXAEHNS ABAAIOTCA BUAbI
AVHAMUYECKUX PeXUMOB 1 3$OEKTMBHOCTL NPeobpa3oBaHms XUMUYECKOA IHEPriK B INIEKTPUYECKYIO B 3aBUCUMOCTI OT paboyeld Harpysku,
KM3HEHHBIX LIMKNOB GaTapeii, BK0Yas yCTaHOBKY, paboTy Moj Harpy3Koii, CTapenue u pacnaf. flanee B cTaTbe 06CYX/AAIOTCA 0COBEHHOCTH
ynpaBneHns batapeiiHbIMK CETAMM, B YaCTHOCTI, LIMKN 3aMeHbl CTapbIx 6atapeii Ha HOBble, BKNKYas ONTMMU3ALMIO 3TOr0 Lkna. B 3aknto-
YMTENbHOI YaCTU JaHHON PabOTLI NPUBOAMTCS CMIMCOK OTKPLITBIX 33Aa4 M NPO6EM, KOTOpble HEO6X0AUMO NPoPaboTaTh.
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Introduction

The working paper written at the Mini-Work-
shop “Nonlinear Battery Models” (September 2,
2019), organized by P. Plath at time of the In-
ternational Conference “Dynamic Days Europe”
(September, 2019, Rostock, Germany). In the
meantime, two of the present authors (Vadim
Anishchenko and Lutz Schimansky-Geier) passed
away, so this working paper is to be considered as
a historical document, witnessing a long-standing
collaboration.

Electrochemical batteries and fuel cells are
nowadays the key technologies of our time which
more and more replace classical technologies based
on combustion. In particular Lithium-ion batter-
ies have become the most common rechargeable
batteries for consumer electronics and automotive
applications due to their high energy densities, de-
cent power density, relatively high cell voltages,
and low weight-to-volume ratios. The same actu-
ality has fuel cells which are perspective also for
motor industry etc. There are also some new de-
velopments in the field exploring new devices as
e.g. the vanadium redox-flow batteries, sodium bat-
teries and ammonia-fed fuel cells. For improving
battery and fuel cell performance have intensified
the need for mathematical modeling. Modeling and
simulations allow for the analysis of an almost un-
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limited number of design parameters and operating
conditions at a relatively small cost. Experimental
tests are used to provide the necessary validation of
the models. For a battery manufacturer, models and
simulations help to improve the materials and the
design of battery systems. It has been shown that
concepts of synergetics may be helpful for battery —
determination and forecast of the dynamical behav-
ior including aging [1]. There exist many works
modeling batteries as nonlinear circuits by means
of differential equation calculus [2-8], including
problems of efficiency [6, 9]. In order to demon-
strate a new development in chemical storage, we
also include a discussion of a new type of batter-
ies, the vanadium redox-flow batteries [8, 10, 11].
The vanadium redox battery, also known as the
vanadium flow battery, is a type of rechargeable
flow battery that employs vanadium ions in dif-
ferent oxidation states to store chemical potential
energy [8, 10, 11]. In many respect, batteries may
be considered to be very specific in some respects in
comparison to standard nonlinear circuits. Specific
properties can be related to the fact that batteries
are dynamical systems with life cycles like living
creatures, including birth, growing, working under
load, aging and taking out of the system. These
specific properties are responsible for rather spe-
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cial elements in our nonlinear models which remind
even some models of biosystems [6].

1. Experimental monitoring of the aging process
of batteries

1.1. Internal measurements at different locations
within the battery

We assume that the aging of a battery is not
considered as abrasion or poisoning of the battery,
but it is caused by the process of dynamics of charg-
ing and discharging. We further suppose that this
applies in principle to any type of battery. We have
carried out our investigations using lead-acid bat-
teries as examples, which are used for instance in
hundreds of millions as starter batteries, where un-
derstanding how they work is of great relevance
even today. These tests and the data evaluation
were performed by us according to our ideas and
specifications using software developed by us. The
company VB Autobatterie GmbH (formerly Varta)
gratefully provided us with its test utility and a
workplace to conduct our measurements under in-
dustrial conditions. In an additional internal study
in cooperation with Dt. Accumotive GmbH &
Co. KG, which was also carried out according to our
specifications and evaluated by us, we were able to

show that the principle results obtained for lead-acid
batteries can also be applied to Li-ion batteries.

In order to perform internal measurements
within a lead-acid battery, the measuring electrodes
must be durable, unbreakable and mechanically sta-
ble and must not be chemically altered by the actual
process. It follows that the measuring electrodes
themselves must be made of lead. In addition, it
must be ensured that the packing of the battery
stacks and their geometry are not changed in the
process. Figure 1 shows the experimental test ar-
rangement for two lead-acid batteries, each with
10 measuring probes. A more detailed description
of the measurement system can be found in refer-
ence [1].

Furthermore, the selection of the battery cell
stacks, and the arrangement of the probes in relation
to the poles plays a major role. Both the tempera-
ture development and the current flow must be taken
into account. For starter batteries with 6 stacks
each, we have therefore selected the middle cell as
shown in Fig. 2 (left panel). Another problem is
that in a lead-acid battery, the density of the acid
and the acidity is a function of the charging and
discharging process. In other words, locally differ-
ent electrochemical processes change the degree of

Two batteries with 10 measuring probes each

Battery 1

Battery 2

Fig. 1. View of two lead-acid batteries in the test laboratory at VB Autobatterie GmbH
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acidity in the different layers of the battery. Thus,
if one wants to record the spatial and temporal vari-
ation of dynamics in a battery, one must provide
measuring probes both at different heights of a cell
and at different lateral positions. An arrangement
of measuring probes in a cell resulting from these
considerations is shown in Fig. 2 (right panel).
Discharging and recharging of the battery was
done by the test program AK 3.4 of the company VB
Autobatterie GmbH and the recording of the volt-
age responses at the individual positions by our own
software developed for this purpose. Figure 3 shows
exemplarily the rectangular driver pulse due to the

Selected cells of the batteries

Battery 1
Probes in Cell 2
Top view
Battery 2
Probes in Cell 5

discharge and charge currents (red) as well as the
voltage curve of the battery’s response (black) for
5 cycles within about 6 hours. The response be-
havior of the battery, with which it reacts to the
perturbation, does not follow the rectangular pulse
in a simple way, but corresponds to the intrinsic
times of the system and makes it possible to deter-
mine the age of the battery. However, we cannot
exclude the possibility that the battery may also ex-
perience autonomous oscillations.

Figure 4 demonstrates the aging of a battery by
means of the voltage curve of the total battery volt-
age in comparison to the simultaneous voltage curve

Positions of measuring probes in battery 2

Pos. 1 —— — Top view
/
o o o o
([ J
o o o o
\ /
Side view

Fig. 2. Left panel: Selected cells where the probes are placed within two batteries. Right panel: Positions of measuring probes
in cell 5 of battery 2. In two different heights, 5 measuring electrodes each are arranged according to the side view shown in

the Figure
Battery 1, Test program AK 3.4
60 T T T T T 14.5
40 r 1140
IA]} 1U [V]
40 | \ 1120
-60 - ' . - 4 11.5

0 1

t [hours] 5 6

Fig. 3. Rectangular driver pulse due to the discharge and charge currents (red) and the voltage curve of the battery’s response

(black) for 5 cycles within about 6 hours. The industrial test program AK 3.4 of VB Autobatterie GmbH was operated in such

a way that the maximum voltage was limited to 14.4 V during charging in order to prevent overcharging of the accumulator
(color online)
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Battery 1, 742-381,AK.3.4

>
b 8 \ \ =
6 - -
b Battery voltage i
2 = -
0 1 | 1 |
0 5 10 15 20 25
t [Days]
: . Battery 1, Probe in cell 2, Pos. 1, bottom left
: @ T T T
/ i
0] [ ) _
° Local cell voltage
05 -
]
0 | | 1 |
0 5 10 15 20 25
f [Days]

Fig. 4. Aging of a battery demonstrated by the voltage curve of the total battery voltage compared to that of a single measuring
probe near a corner at the bottom of the cell (color online)

of a single measuring electrode, which is located
near a corner at the bottom of the cell at high acid
concentrations. In these experiments, aging was
generated by longer periods of alternating charge
and discharge cycles, as is common in industrial
technology. One week of these measurement cycles
corresponds approximately to the aging of a battery
within one year in normal operation. The perfor-
mance of the battery, i.e. its State of Health (SoH),
after such a one-week treatment or an annual aging
period was tested by extreme load experiments.

An impression of the aging process of a bat-
tery can already be obtained by comparing the total
battery voltage during the discharging and charging
processes in its new and in its aged state. These
discharging and charging processes are by no means
cyclic ones in the form of a limit cycle. Figure 5 il-
lustrates this in a compressed 3-dimensional phase
space representation of the delay attractors of the
battery voltage at the beginning of the test as well
as after approx. 3 weeks corresponding to about
3 years of treatment of the battery.

More detailed information than from battery
voltage is obtained from spatio-temporal voltage
measurements of individual probes. Figure 6 shows
the time series of local potentials corresponding to
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4 probes in 4 different lower positions within the
stack at strong acid concentration, measured against
the positive electrode over a period of about half a
week. It can be clearly seen that the voltage curves
at the different positions lead to different time se-
ries.

1.2. Empirical evidence for aging processes

The aging of a battery is particularly evident
if one compares the delay attractors of voltages of
a single probe with those of total battery voltages.
In contrast to Fig. 5, Fig. 7 shows the aging using
the example of the delay attractors of a centered
measuring probe in front stack position in cell 2.
Already after 3 weeks corresponding to 3 years of
battery aging, the attractor (yellow) deviates sig-
nificantly from the healthy state (green) and grows
excessively shortly before the end of battery life-
time (red).

The different time series of local potentials (see
Fig. 6) and their attractors make it clear that there
is no uniform aging process within the battery, but
that different locations between the electrode plates
behave in different ways, even within a layer of the
same acid concentration. This also means that the
system acts chemically differently at different loca-
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Battery 1,742-381,AK.34

Starting point, f = 20.8 days
Duration = 1.3 days
7 =30 min

M5~ -ﬁtarting point, = 1.1 day
A Duration = 1.3 days

Ua+20[V]

135 -

13

U@Vl

U(t+1)[V] 128

ns 15

Measured values from VB Autobatterie GmbH

Fig. 5. 3-dimensional phase space representation of the delay attractors of the battery voltage at the beginning of the test and
after approx. 3 weeks of treatment of the battery. In each case, the duration of the test period amounts to 1.3 days and the delay
value 7 is 30 minutes (color online)

Battery 1, Development of the lower probes in cycle 1

Probes against
positive ground
PbO,

)

el

a.

Lower probes Z

4

*— g
—0-

Top view on cell 2

Fig. 6. Time series of the local (half-) potentials of four probes in lower positions as indicated, measured versus the positive
mass PbO,. The 3 diagrams, arranged under each other, correspond to three different time intervals of measuring cycles (30 min
discharging, 40 min charging, both with about 53.9 A) (color online)
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Battery 1, Cell 2, Probe: Pos 1, centered

2.8

26

24

— begin 2" week
begin 4" week
— end of 5™ week

U(t+27)[V]

2.2

2.8
26
24

U(t+7)[ V] 22

28
24 26

U®lV]

Fig. 7. 3-dimensional delay attractors of local potentials measured by a centered measuring probe located in front stack position
in cell 2. The delay time of each attractor is T = 150 s. The attractors were obtained at the beginning of the 2"? and 4™ week as
well as at the end of the 5" week for approximately 8 discharge and charge cycles each at approximately 53.9 A (color online)

tions in its development over time, i.e. in the way
a position ages, its chemical behavior also changes.
Therefore, it cannot be assumed that the electro-
chemical processes taking place at the electrodes of
the battery are synchronous and uniform; instead,
due to the non-synchronous reaction behavior be-
tween the lead plates, spatio-temporal patterns are
formed that are characteristic for the aging state of
the battery. From these patterns and their tempo-
ral development, the aging state of a battery can be
determined using the methods of synergetics.
Battery aging is thus a highly complex process
that is only incompletely described by the existing
methods as we have shown for the lead-acid battery.
Of course, the forms of aging, and thus the attractors
of aging, are different for other types of batteries,
such as the Li-ion battery, due to their different
chemistry, and each battery type requires a different
experimental setup to take this into account. This re-
veals a weakness in current battery research, which
is focused mainly on the investigation of numer-
ous electrochemical systems to optimize the desired
battery performance. But all batteries are aging.
A general possibility to detect the aging state of a
battery by short-time measurements at the battery
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poles with periodic excitations can also be found
in [1].

2. Modeling electrochemical batteries and fuel cells
as active circuits

2.1. Basic schema of active currents driven
by chemical energy

We consider electrochemical batteries and fuel
cells as active nonlinear circuits with special proper-
ties in difference to other active circuits which were
studied in much detail [2, 3]. Standard models of
batteries and fuel cells were described in [4]. Our
model is based on the analogy between active elec-
trical circuits and active particles [6, 9]. Specific
points of the discussion here are the facts that in
particular the most popular batteries, the Lithium
cells batteries are dynamical systems which much
in common with biological creatures. For example,
they have life cycles like biological species, includ-
ing birth, growing, working under load, aging and
decaying (taking out of the system after collapse of
the function). Conversion of energy by means of ir-
reversible processes and dissipative structures is not
new; various technical and biological systems func-
tion this way. If we restrict ourselves to systems
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with chemical energy input, we may distinguish
between converters to, e.g., mechanical, electrical
or radiation energy. Here we briefly discuss typ-
ical efficiencies of some traditional “engines” of
this particular type. Mechanical work is obtained
from the chemical energy of fuels by combustion of
raw materials such as wood, coal, oil or gas. The
engines are kinds of self-sustained nonlinear oscil-
lators such as steam engines, combustion motors or
jet plane turbines. As far as the fuel is burned and
the resulting heat is used as an energy pump of the
nonlinear oscillator, the efficiency of such machines
cannot exceed that of the thermodynamic Carnot cy-
cle, as a consequence of the 2nd law. Fuel cells are
devices that convert chemical energy to electrical
energy without the intermediate stage of producing
and consuming heat. Typical efficiencies of fuel
cells range from 20 percent to 70 percent [7]. In
difference to fuel cells, the mechanism of batteries
isbased on a closed cycle. First the electrical energy
is stored into chemical energy inside the cell and in
the second half of the cycle this chemical energy is
converted into electrical energy.

Similar to the dissipative structures of steam
engines or gas turbines, a fuel cell will “starve” at
subcritical values of the energy pumping rate. In
this article, a theoretical model will be described
for alternative, self-organized processes that may
act like a fuel cell. As already said, a fuel cell
is a device that converts the chemical energy from
a fuel like hydrogen gas into electricity through a
chemical reaction of positively charged hydrogen
ions with oxygen or another oxidizing agent. This
process requires a continuous source of fuel such as
hydrogen and oxygen to sustain the chemical reac-
tion of the fuel with the oxidizing agent. Fuel cells
can produce electricity, by exploiting the input of
chemical energy [12]. For a fuel cell to produce
electricity, it must be continually supplied with fuel
and oxidant. The details of this mechanism can be
quite complicated. We will study here only a sim-
plified schema which we call “active circuit”. The
model should reflect at least in a rudimentary form
the following observed physical properties of fuel
cells: When a fuel cell is operated with high out-
put, i.e. high current, its demand for reactants is
large. If the reactants are not supplied to the fuel
cell quickly enough, the device will starve. The
work of fuel cells is based on electrochemical re-
actions, connected with the fuel, e.g. hydrogen,
the oxidizer and charges. Once the reactants are
delivered to electrodes, they must undergo electro-
chemical reactions. The current generated by the
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fuel cell is directly related to how fast the electro-
chemical reactions proceed. Fast electrochemical
reactions result in a high current output from the
fuel cell. Slow reaction results in a low current
output. As a promising new direction of develop-
ment, we mention the ammonium-based fuel cells
[12]. Ionic conduction happens through the elec-
trolyte and electron conduction through the external
circuit. The electrochemical reactions occurring in
step 2 either produce or consume ions and electrons.
Ions produced at one electrode must be consumed
at the other electrode. The same holds for electrons.
To maintain charge balance, these ions and electrons
must therefore be transported from the locations
where they are generated to the locations where they
are consumed. For electrons this transport process
is rather easy. As long as an electrically conductive
path exists, the electrons will be able to flow from
one electrode to the other.

In detail all these processes are extremely com-
plex and there exists a big variety of models [13—15].
We are studying here only macro models for the
functioning of batteries and fuel cells, which oper-
ate in a space of a few time-dependent variables as
charge, current and energy content. Figure 8 shows
several schemes of macro models (Ersatzschaltbild)
used for modeling batteries, as used e.g. by Eck-
ert [14] (left panel) and by Wang et al. [15] (right
panel).

The highly simplified schema which we use to
model the quite complex processes in real systems is
the following. The active particles in our schema are
the charges. For simplicity, we study only two vari-
ables for the characterization of the electric state, the
charge of the capacitor Q and the current /(¢) in the
circuit. The charge is a variable which may increase
or decrease and is therefore a dynamic quantity Q(7).
The charge may increase or decrease following the
consumption of fuel and is connected with a current
I(t). The third relevant dynamical variable is the
energy contained in the chemical reactor E(¢) which
is driving the electric current / in the circuit.

This way we have to define at least 3 differen-
tial equations that specify the dynamics of the fuel
cell within our model which we expect to work with
modifications also for batteries

dQ (1)

g =1(),
d{T(zt) =K (I1(t),E(1),0(t)), 1)
dflf” —B(E@).1())
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Fig. 8. Schema of the simple battery model used by Eckert [14] (left panel) in comparison to the more advanced model proposed
by Wang et al. [15] (right panel) (color online)

The two functions F;, F; modeling the energy flow
from the chemical reactor/capacitor to the current in
the circuit have still to be determined in a way that
the properties of the fuel cell which we described
above are reflected at least in a qualitative way. This
will be done in the next section.

There are several properties which are relevant
for an efficient regime of fuel cells, which however
are not principal ingredients and will not be mod-
eled here. For example, the efficient delivery of
reactants is more effectively accomplished by using
flow field plates in combination with porous elec-
trode structures. Flow field plates contain many fine
channels or grooves to carry the gas flow and dis-
tribute it over the surface of the fuel cell. The shape,
size, and pattern of flow channels can significantly
affect the performance of the fuel cell. Obviously,
high current output is desirable. Therefore, cata-
lysts are generally used to increase the speed and
efficiency of the electrochemical reactions. Fuel
cell performance critically depends on choosing the
right catalyst and carefully designing the reaction
zones. Specific points of discussion are the facts
that batteries and fuel cells are dynamical systems
having life cycles like living creatures, including
birth, growing, working under load, aging, failure
and taking out of the system.

2.2. Storing electrical energy in electrochemical
systems — redoxflow batteries

We concentrate in this work on the half-cy-
cle connected with the conversion of chemical into
electrical energy. The other half-cycle, connected
with storing chemical energy may be modeled prin-

cipally in the same way as the reverse process.

However, since several details of this inverse model,
mainly connected with stability, are still open, we
discuss the storage of electrical energy electrochem-
ically only in general terms. Storing electrical
energy electrochemically is a quite old invention
of physicists and chemists, recently due to urgent
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needs of storage, we see many new developments
and interesting inventions. We discuss here the prin-
ciple of chemical storage on the case of a quite
recent and at the same time transparent method, the
vanadium redox-flow battery. The vanadium redox
battery employs vanadium ions in different oxida-
tion states to store chemical potential energy [8].
The vanadium redox battery exploits the ability of
vanadium to exist in solution in four different oxida-
tion states, and uses this property to make a battery
that has just one electro-active element instead of
two. In the general schema, we have two liquids,
one contains two areas of V*'-ions separated by
a semipermeable membrane from the other liquid
with V2T and V3. In the work cycle of the battery
generating energy (discharging) we observe that at
the positive electrode V°' is reduced to V*. At
the same time, we see at the negative electrode that
V?2* is oxidized to V3*. The energy rich liquids are
stored by pumping in two extra tanks which define
the capacity. The fact that the tanks are, with re-
spect to their size, independent on the size of the cell
device, is one of the advantages of the redox-flow
battery. For several reasons, including their relative
bulkiness, most vanadium batteries are currently
used for grid energy storage, i.e., attached to power
plants or electrical grids. The possibility of creat-
ing a vanadium flow battery was explored already
in the 1970s. The first successful demonstration
of the all-vanadium redox-flow battery which em-
ployed vanadium in a solution of sulfuric acid in
each half was by Rychcik and Skyllas-Kazacos in
the 1980s [8].

The redox-flow battery based on vanadium
electrochemistry is a promising candidate for load
leveling and seasonal energy storage in small grids
and stand-alone photovoltaic systems. The rever-
sible cell voltage of 1.3 to 1.4 V in the charged state
allows the use of inexpensive active and structural
materials. Another promising direction is the devel-
opment of sodium-based batteries [12].
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3. Dynamics of nonlinear electrochemical circuits

3.1. Active electrochemical circuits

We model here the processes of conversion of
chemical energy into work in batteries and fuel cells
by using the analogy to active particles [6,9]. Stan-
dard models are described by Newman [4]. We
describe here only homogeneous models based on
thermodynamic balances and the idea of active cir-
cuits. Active circuits are the electrical analog to
active mechanical particles [16, 17]. An active cir-
cuit is an electrical system consisting of an RCL-
circuit including elements with “negative resistance”
[2]. We assume a dynamics of the following type
for a charge Q(¢), a current /(¢) and a chemical en-

ergy e(t)

dQ (1) ~de
dt Codr
dl 0

L— =—RI—= del 3
dt C+Uo+ el, ()

Here, g, means the chemical energy flow, c¢ is the
decay rate and d is the rate of transmission of depot
energy to energy of motion, L is the impedance, R
is the resistance, C is the capacity, and Uj is a kind
of external load which in the case U = —a < 0 is
a load to overcome. For example, we may assume
that a charge Q is to transfer to a higher level of
the electrical potential, i.e. work is to be done. In
the case that the energy assumes stationary values,
the system may be reduced to the model of a driven
electrical oscillator. For modeling a specific battery,
we may use the simple schema by Eckert shown in
Fig. 8 (left panel). According to Kirchhoffs rule, we
find for the big loop

ge —ce —del?, )

Ut)+h(t)Ro+1(t)R, =0 (4)
and accordingly we get for the active loop

2
R 112, 2 4?2

= =0. 5
dt e C dt ©)

Here the second term in parenthesis stands for the
double arrow in Fig. 8, i.e. a (large) capacity C, a
(small) impedance L, which we add for generality,
and the most essential chemical source of energy
which follows

de

_ Ik
i } ) (6)

e - de .,
g. —ce e { I
The feeding by chemical energy with the flow ¢, > 0
makes the small circuit an active element. The loss
in chemical energy drives the current and charges
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the capacitor. The active process of energy conver-
sion of chemical into electrical energy is symbolized
graphically in Fig. 8 by a double arrow. The system
possesses in the power regime, where I° is created
and e is used, a stationary state

_ e, de  Ce

Qo=U C; e ' I(%:F—d—e. (7)
Here ¢, denotes internal losses (internal resistivity).
In some range of parameters, this state is a stable
node. In another range we find an unstable node
surrounded by a stable limit cycle, so that the system
may develop stable oscillations around this state.
Running our dynamics reverse in time, e is created
and /7 is used. This would correspond to a charg-
ing regime. Formally we may map this regime to
the case ¢, < 0; d, < 0; ¢, < 0; Uy < 0. Then the
stationary state still exists, but is in general less sta-
ble. Thus, the present analysis describes mainly the
power regime of our model. In order to give an ap-
propriate stable description of the charging regime,
we need some modifications, and this case is still to
be explored. In the power regime, our system shows
beyond a critical value of dg. = RC sustained oscil-
lations. Numerical solutions for the power regime
of our battery system (Egs. (2) and (3)) are shown
in Fig. 9. In the left panel we show above the oscil-
lating voltage in the big circuit and below in the red
curve Ugcy the so-called Open Circuit Voltage in
the small active circuit. Further we demonstrate in
the green curve the current in the active circuit and
by the blue curve the chemical energy which shows
also small fluctuations.

Electrochemical oscillation phenomena were
described already in the foregoing Section. In Figs.
4-6 we see oscillations with frequencies around
0.05 days, i.e. around 1 hour. Other examples were
for rechargeable batteries observed in [18]. The au-
thors Lietal. speak in the mentioned work about the
battery heartbeats and suggest that the heartbeat is
due to a process of self-reorganization of the multi-
particle phase-separation dynamics. The subtle os-
cillatory signals serve as an indicator for the fraction
of actively phase-separating particles in real time.
Here we leave the question of the physico-chemi-
cal origin of the battery heartbeat open and restrict
ourselves to the question of modeling by an active
system.

We investigate now our model system (2) and
(3) with respect to oscillations. A special example
for an oscillating solution of our full model system
(Egs. (2) and (3)) is shown in Fig. 9a. We see the
time dependence of charge, current and chemical en-
ergy of the battery for solutions of the full system of
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Fig. 9. Left panel: Example of a self-sustained oscillating solution of our model (2), (3) for the charge Q(¢) (red), the current

I(¢) (green) in the active circuit and the chemical energy e(¢) (blue). Left panel: Oscillating regime (g, = 0.8, ¢, = 0.5, d, = 0.8,

Up =1, Ry =0.3,L=1, C = 10). Right panel: Charging regime with linear increase of the charge Q(¢), a maximum and decay
of the current and saturation of the chemical depot (¢, = 1, ¢, = 0.5, d, =2, Uy = 1, Ry =20, L = 1, C = 50) (color online)

Egs. (2) and (3). All quantities oscillate including
the chemical energy around the mean value.

Figure 9b shows a completely different situa-
tion. We increased here the resistance to the quite
high value Ry = 20. The dynamical system is now
in an overdamped regime and the oscillations disap-
pear. The chemical depot variable e(¢) converges to
a constant value and the charge increases in a linear
way. The current goes through a maximum and de-
cays then slowly. Possibly this regime may describe
the charging regime of a battery. We studied the
charging regime also by means of a different model
assumption, going to negative parameters and this
way to an inverse in time. Simulating several nu-
merical examples with negative parameters we found
that this regime describes the conversion of electrical
energy into chemical energy only for a finite time,
then the regime decays and crashes. The more real-
istic modeling of the charging regime needs further
investigations. More refined models should include
positive and negative charges (ions and electrons), so
that the current may flow even for zero total charge.
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Our model is oversimplified, under more realis-
tic conditions the equivalent circuit for an electrode
involves a parallel connection of a capacitance and
a Faradaic impedance, the total current thus being
composed of a capacitive contribution and a con-
tribution due to the electro-chemical reaction. We
concentrated here on modeling the energetic aspect,
i.e. the physical fact that the chemical energy gener-
ated by the reaction is converted to the energy of the
electrical circuit. The reason for neglecting further
effects here is not a physical one. Our motivation
is to allow a one to one mapping to the solvable
mathematics of the model developed by Schweitzer—
Ebeling-Tilch (sometimes called SET model). Any
additional term would break the possibility for ana-
lytical solutions. Our model is in fact nothing more
than the extension of the standard circuit equations
by a quadratic term in the current which stands for the
energy input and makes the circuit active. This addi-
tional term is, observing the energy balance, coupled
to a simple equation for one reaction. We consider
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this as a minimum of relations describing the essence
of the energy transfer reaction-current.

The properties of this dynamical system have
been studied for the mechanical picture in the works
[16,17]. Here we concentrate on the stationary states
and questions of energy conversion and efficiency.
In the stationary state the chemical energy and the
current are given by Eq. (7). As pointed out, this
regime is in most cases not stable and dynamically
replaced by a stable oscillation around ¢, and /, cor-
responding by a limit cycle. In these cases, the given
numbers for ¢, and I3 represent mean values. Then
an oscillating current is flowing in the circuit. This
current is sustained by the inflow of chemical energy
q. and is dissipated in the resistance R; further ¢, de-
notes internal losses (internal resistivity). The term
U, = +del? denotes the energy transmitted per unit
time to the RCL-circuit, i.e. we have a positive en-
ergy support. This is an auto-catalytical effect which
is essential for the functioning of chemical dissipa-
tive structures. Let us still note that in the stationary
state the impedance L does not play a big role in
the energy balance since the stationary state does not
depend on it. A generalization of our model of one
circuit coupled to a chemical reservoir leads to the
case of two or more equal circles coupled to one
chemical reservoir [6]:

dq, . dj . O )
— =j;; L—=—-Rj;—=+4+Uy+dej;; (8
et o h—"e +Uotdejy (8)
dg, . dj . O .
_— = : Li = —R _— N
dr J25 dr J2 C +Uy+dejr; (9)
de 2, 2
dr =q,—ce—de (11 +J2)~ (10)

The two plus one system shows in energetic respect

several advantages to the one plus one system since

there exists now a class of exact solutions with sinu-

soidal solutions for 7;(¢); L(¢) in opposite phase and

constant in time stable total current energy
_ge  Ce

I&zjf%—j%———gzconst.

- (1)

The corresponding periodic regimes for j;(z) and
Jo(t) in opposite phases show that the electrical
energy is periodically exchanged between the two
circles. This opens the possibility for more effective
regimes of energy conversion. The progress with
respect to the task on energy conversion may be com-
pared with progress in motor technology by going
from the one cylinder automobile motor to technolo-
gies coupling two, four, six or eight cylinder motors.
In both cases of one or two circles, the dynamics
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of the energy exchange between circuits and chem-
ical processes (e.g. in the fuel cell or at the battery
electrodes) is described by balance equations for the
electrical energy, which is E, ~ (LI* + 0?)/2C and
the energy of the chemical reactor e(z), the energy
inflow ¢, and the losses:

dEl de
d; + 5 =+ UI—R (B +13) — cee;

L . (12)
Eg=-J+-—Q%
1 2J +2CQ

Here E,; is the electrical energy of all units.
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Fig. 10. Example of a solution for the case of two circuits
coupled to one electrochemical reservoir. The squared total
current J2 = (2 + j2) shown by the red curve above and the
content of the chemical reservoir demonstrated by the blue
curve below are after a small initial period rather smooth,
different from the oscillating current components j; and j»
(green and violet curves, respectively). This corresponds to a
more useful regime of the battery system (color online)

In order to demonstrate that our statement about
a more useful regime of an even number of battery
components, we show examples of a solution for the
1+ 4-dimensional system, i.e. the case of two cir-
cuits coupled to one electrochemical reservoir (see
Fig. 10). The electrical energy provided by the total
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current which is proportional to (j7 + j3)/2 repre-
sented by the red curve above and the content of the
chemical reservoir represented by the blue curve be-
low show after a small initial period a rather smooth
regime. This is due to the fact that the individual cur-
rents, which still strongly fluctuate, are in counter-
phase and give therefore in total a smooth current
flow. This corresponds to a more useful regime of
the battery system as we observed in case of one
circuit. This again reminds us of the analogy to
the big progress that the motor industry achieved
by coupling an even number of motors operating in
counter-phase. Our model for the dynamics of en-
ergy conversion in a fuel cell is closely related to
some previous work on individual driven particles
and driven swarms of active Brownian particles.

3.2. The analogy to active particles, molecular motors
and animal motion

This model considers mechanical motion driven
by coupling to energy depots, feeded e.g. by the
food of animals. The relation to our model of “ac-
tive circuits” to the widely used biophysical model
of active Brownian motion is based on the analogy
between mechanical and electrical systems by using
the “dictionary”:

mechanical coordi-
nate g

— electrical charge Q,

velocity v = ¢ — current /,

kinetic energy k = — current energy ~I°,
= mv*/2

mechanical mass m  — impedance L,

oscillator constant k ~ — reciprocal capacity 1/C,

friction p = my, — resistance R,

driving force F; — electromotoric force U,.

In several earlier papers, we studied the dy-
namic of active mechanical systems with a mass m,
located at coordinate ¢(#) moving with velocity v(z)
where v = ¢, which is accelerated at the cost of
the chemical depot energy e and may perform work
against a load:

mv+pov=Fy+dev, Fy= —a, a<0. (13)

Here F( < 0 is an external force, a load, and for the
driving force on cost of a depot energy, we assumed
F, = dev. This driving force is proportional to the
energy depot of chemical nature e, p = mY a friction
constant, and k¥ some elastic constant, which in most
cases is put to zero here.

Within the original SET model, we assumed
for the depot energy e(r) the simple dynamics

300

[6, 19-21]:

¢ =q.—ce—dve. (14)
The three constants g., which is the input rate of
depot energy, ¢, the decay rate and d, the rate of
transmission of depot energy to energy of motion,
determine the functioning of the motor mechanism.
We considered e as a kind of chemical energy as e.g.
ATP stored in the depot. The physical meaning is
that we have a permanent inflow of energy, which is
constant g. = const, and flows with rate dv?(t)e(t)
to the mechanical degree of freedom [22, 23]. Note
that previously we mainly used units leading to m =
= 1. For go > poc/d there exists a stationary point in
the positive cone of the energies which corresponds
to two stationary points in the phase space. This cor-
responds for the force-free case to two velocities for
the same stationary depot energy

v = 10y,
e:eong/d, (15)
Vo = £+/(qc/po—c/d).

We note that the coordinate ¢(r) is not necessarily a
linear length coordinate but may instead be the angle
coordinate of a rotor [6, 21]. The SET model may be
applied to problems of animal mobility [16, 19, 20,
22-26] and as shown above, may be mapped to our
model of a fuel cell.

3.3. Problems of efficiency of the conversion
of chemical to electrical energy

We study now the efficiency, which is as usual
defined as the relation of energy flow used for some
purpose to the total imported energy flow. For sim-
plicity, we concentrate on energy conversion in the
inner circuits following in large [9]. In a generalized
mode, we do not fix here the number of operating
circuits, assuming only that all have the same param-
eters, and consider J and Q as vectors:

Q: [q17q27"'7qn]7 J= UlajZa"'vjn]' (16)
The dynamical equations are in vectorial form
dQ
Z=_7
dt ’
dJ Q
L— =—-RJ— = +Uj+deJ 17
dt C + 0+ ed, ( )
de
— =gq,—ce—deJ*.
g — e —ce—de

HayuHbivi oTgen



V. Anishchenko et al. Modeling battery systems

B

Assume the relation of stationarity

L=X=j+j+...=q./R—c./d,
(18)
€y = —.

d
Note that the dynamical properties of this more gen-

eral model will be analyzed in a subsequent work.

Here we consider only the stationary state which is
the same for any dimensionality. There are two situ-
ations of special interest:

1. The energy is used to overcome an additional
external dissipation, an extra resistance, and is con-
verted to heat (or possibly light).

2. The energy is used to do useful mechanical
or electrical work, possibly by bringing a charge to a
higher potential level or driving an electromotor.

The first case is much easier in mathematical
respect. We model the external dissipation by some
additional unsymmetrical resistor R;. The model
assumption is that the resistor which simulates a
load acts only on positive currents, but not on neg-
ative currents. Then the negative currents remain

07 T T T T

0.6

0.5

04

0.3

0.2

0.1

R//R; 2=0.05,0.1,0.2

unchanged, however the positively directed currents
will go down by some amount I? < I? determined by

dc c

I = -=. 19
'""R+R, d (19)
The corresponding shifted currents are with different

signs

g9. ¢

R+R, d’

The additional loss to overcome by the positive cur-
rents is RyI7. This way we find for the efficiency

R, I? 1 d
1’]:71 L =R —— .
qc R+R; ¢

Figure 11 shows that the efficiency increases first
with the load and reaches a maximum around r;~
~ R. For any set of parameters, the efficiency curve
stops at some critical load, i.e. the system stops here
to work.

Now we investigate the case of constant counter
voltage modeling a load. This is the situation where
it is more difficult to bring the charge to a higher po-
tential level. This situation is physically quite simple

(20)
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Fig. 11. Left panel: Efficiency of energy conversion 1 vs. dissipative load parameter with R; /R for different parameters

A =Rd = cq. = 0.05, 0.1, 0.2. Right panel: Efficiency z vs. a conservative load y for two quite low circuit loss parameters

A= 0.05, 0.02. We see again that for finite loss parameters, the curve stops at some critical load, corresponding to regions where
Eg. (23) has no more real solutions, the regime where the circuit “works” breaks down (color online)
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but mathematically more difficult. Without loss of
generality, we assume that the additional voltage is
directed to below Uy = — a; a > 0, i.e. it tends to
decrease the current. If a is small, the two attractors
are shifted linearly in the force to lower values of the
current

qgca R a

Iglzilo— ) Elz—j:—

Ll 22
2R2[2 it

For larger voltages, we have to solve nonlinear equa-
tions which we formulate in dimensionless variables:

=1
0

— a .
y - R IO 1)
We find a cubic equation which is an implicit relation
between current and load:

cR

A=——.
qgcd —cR

& +)y8 —E+ry=0; (23)
Here A is a parameter describing the dissipation in the
circuit and Ay determines the character of the solu-
tions. In the context of stochastic transitions, the case
is of interest that the positive stationary currents ap-
proach each other and merge finally. The existence
of real roots is bound to the condition that the dis-

criminant of the cubic equation is positive D(y,A) > 0.

For D(y,A) < 0 only downhill (i.e. less interesting)
solutions exist. Looking for example at motor pa-
rameter A = 0.5, the largest y which provides positive
solutions for & is ym. = 0.28. Our driven system is
able to do work at the cost of chemical energy im-
ported by the energy input g. > 0. We define the
thermodynamic efficiency as useful work against in-
put of (chemical) energy into the depot

Uy I al
n= bl _ch (24)
qc qc

Here I, = &1, is the stable “uphill” current corre-
sponding to the largest positive root & > 0. In
some previous work [6,21], we used a linear approx-
imation and found a parabolic dependence between
efficiency and load with the maximum of efficiency

(1-2)%, (25)

N | =

MNmax =

which cannot exceed 50 percent reached for the case
of no losses. Including nonlinear effects, we find us-
ing the dimensionless variables y, & for the efficiency
N = (14 A)&y the following equation for the variable

=28
2+yz(z—1)+M* =0. (26)
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The solution expressing y in term of the efficiency
variable z reads

2_i _ \/12 _ 2_13
y—zxz(l 7)+ TR (1—2) 7o (27)

The condition that the root in Eq. (27) should be real
gives the largest possible value of efficiency

Mmax = <1+}\') Zmaxs
Imax — 1+27\,—2\/7\.(1+7\1).

The optimal load is the value where the maximum is
reached

(28)

1 1
yipt = izmax (1 _Zmax) = WZEI{;(. (29)

In the limit of small losses, the efficiency converges
to 1 and the optimal load diverges as A~/*. To give
some examples, if A = 0.5, the largest value of effi-
ciency is Nmax = 0.18 and for A = 0.02, we get the
largest value My = 0.74 at y,,, = 2.1. A graphical
representation of the efficiency variable z against the
load y is shown for A = 0.02 and for A = 0.05 in
Fig. 11.

Analyzing Fig. 11 (right panel) shows that ac-
cording to nonlinear effects the efficiency curve is
not parabolic as the linear theory predicts [6, 21] but
less symmetric and the maximum can be higher. It
is interesting to note that in our case only nonlinear
effects provide efficiencies better than 50 percent.
For low losses and optimal load, the efficiency may
approach one. However, for any finite quality param-
eter A, the curve stops at some critical load, which
corresponds to parameter regions where the cubic
equation has no more real solutions. Then the uphill
regime breaks down suddenly, not gradually. Only
for the case of no losses A = 0, the curve may reach
for a special load the efficiency one. As the graphical
solutions for the case of very low losses A = 0.05,
0.02 clearly demonstrates, the efficiency may only
for such low losses and optimal load reach values
exceeding 60 or even 70 percent. In order to reach an
efficiency of 100 percent, the internal losses in depot
and motor must disappear cR — 0. The model shows
some interesting properties which qualitatively re-
produce in particular the behavior against load which
we expect from intuition and which was found al-
ready in other estimates and in experiments about
molecular motors [22, 25-31]. In several simula-
tions of the dynamical system, we observed for larger
loads, say, y > 1 a low stability of the “hill-climb-
ing state” in the numerical simulations. This means,
that it might be quite difficult to realize the states
with high efficiency. The influence of noise has
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been studied based on the property that our dynam-
ical system has a quasi-Hamiltonian character and a
canonical distribution function [29].

4. More refined dynamical models and attractors
of batteries

4.1. Time dependence and Nyquist plot

From the point of view of physics and nonlin-
ear dynamics, batteries are highly nonlinear systems,
as we have shown by means of attractors derived
from measurements (see Figs. 5 and 7 in Sec. 1.1
and 1.2). The most characteristic time-dependent
properties of battery cells to be explained by a dy-
namical model are reflected in the so-called Nyquist
plot which is a standard tool of physics and electrical
engineering. The Nyquist plot represents a plot of
the real and imaginary parts of the impedance of a
nonlinear electrical circuit. The most common use
of Nyquist plots is for assessing the stability of a
system with feedback. In Cartesian coordinates, the
real part of the transfer function is plotted on the
X axis and the imaginary part on the Y-axis (see,
for example, Fig. 12). The Nyquist plot of Li-bat-
tery cells shows a quite typical shape. How useful
this graphical method is for the investigation of sta-
bility of a given nonlinear system was first shown
independently by the German electrical engineer Fe-
lix Strecker at Siemens in 1930 and the Swedish-
American electrical engineer Harry Nyquist at Bell
Telephone Laboratories in 1932. Nowadays called
Nyquist criterion is a graphical technique for deter-
mining the stability of a dynamical system. Because
it only looks at the Nyquist plot of the open loop

A

-Im(Z)

Inductive Effect

KHz

Charge Transfer
Reaction and
Double Layer

Effect

systems, it can be applied without making explicit
the dynamical model of the system. Figure 12 shows
the typical Nyquist plot empirically observed in in-
vestigations of Li-batteries. However, as found in
many studies, the standard models based on usual
differential equations of the type above, are unable
to reproduce the frequency behavior reflected in the
Nyquist plot. For this reason, more general dynami-
cal models are needed [2]. In other words, one has to
generalize the standard concept of circuits going to
nonlinear noninteger order circuits which are more
appropriate for describing the properties of batteries
and fuel cells [2].

4.2. Dynamical models based on fractional calculus

In recent work, the idea came up to include
fractional calculus for modeling the mechanism of
nonlinear circuits including batteries and fuel cells
[2, 14, 15, 32]. The processes in a lithium ion cell
may be represented by a schema (Ersatzschaltbild)
as proposed by Eckert [14] and by Wang et al. [15]
(see Fig. 8). In mathematical terms, the model by
Wang et al. [15] based on fractional calculus reads

D%x, (1) = _);?11(th Uc(lt) 7 (30)
D) =20 00
D'x; (1) = —Ql. 32)

We will try to map the dynamics of our system
(Egs. (2) and (3)) to a similar structure with the as-
sumption of slowly changing currents df/dt = 0 and

Frequency Increment
—

Diffusion and
Migration Effects

Re(Z;

Fig. 12. Typical Nyquist plot of a Li-battery
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time dependent input ¢(¢) and constant output Uy, we
get

dQ
=
dr
Us— Ry I+ U, — V. +del = 0: (33)
d
d—: =g, —ce—del’.

Here is V., = Q/C the voltage at the capacitor. We
study now the limit of slow current changes, what
is equivalent to the assumption L = 0. This leads
in the limit of slow current changes or L = 0 to the
slow charge Q-dynamics. Further, we will use the
assumption that the term U, is small. Following

the schema and notations proposed by Wang et al.

and restricting to one circuit, we find for the voltage
in that capacitor circuit and the current in the big
circuit

dv. L—1
dt c’ (34)
0= *RO I()*VC‘FU(;‘FdeIo,
VL- V() +d€[0
L2 ——4 —
=R TR
35
de (V. —U,) (32)
— =q.—cetde——75.
dt (R+de)

These approximations lead us to a system of two dif-
ferential equations:

ave Ve " Vo—Ve
dt ~ RC  CRy+Cde’
36
de (Vo—Ve)? (36)
— =¢g.—cet+de-——".
dt (R() + de)
By introducing the dimensionless coordinates
y1 = Ve/Vao,
Y2 = dE'/R(),
(37)
t=1/RC,

VE =R%/dR

the two basic differential equations assume the form

dy, _ ., R (ye—y1)
dt "Ry (14y2)
(38)
@:qz_yz cz+(y1_ye)2
dt (1+y,)°
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These two equations describe in our model the dy-
namics of the main battery variables y; standing for
the internal voltage at the “capacitor” and y, standing
for the battery charge, in dependence on the external
load y,. Positive load means, that the battery has
to do work, negative load means that the battery is
charged on the cost of the external voltage U,. The
internal voltage will increase, if V. > U,, i.e. y; >y,
and otherwise it will decrease. The stationary state
of this dynamical system of second order is defined
by the two equations

(1+y2)* (cav2 — q2) =21 (1 — ),
(39)

Roy1 =R (ye—y1)/(1+Yy2).

The stationary point 9, y9 is located in the positive
cone and small deviations x; = Vioy0s X2 =2 — y9 sat-
isfy linear equations. The stationary point is a circle
of Lotka-Volterra type and the dynamics is Hamilton-
like. A hypothetical generalization to fractional dy-
namics leads to two fractional differential equations
for two dimensionless variables y;(t) and y,(t) and,
similar as in the Wang model, however with different
and more complicated r.h.s.

Y1—Ye
D%y, (1) = —
yl( ) 1+y27
(1 —ve)? (40)
D%y, (1) = g2 —y» cy+
(1+y2)2

In addition, we have to include equations defining
the battery input, which is here the chemical input
¢q(t) and the external battery load U,. Needless to
say that our model is beyond formal analogies, quite
different from the models presented by Wang and
by Eggert, and starts also from different physical as-
sumptions. The justification of our model has to be
checked of course in more detail. Possibly it may,
however, allow to study problems connected with
efficiency, which is in our extended model time-de-
pendent and a function of ¢(¢) and U,. Note that for
studies of the stationary states and for efficiency in
the stationary states, the transition from usual deriva-
tives to fractal derivatives does not matter. The
differences appear only in the time-dependent prop-
erties and in particular in the spectra.
Corresponding to the original background of the
model, coming from fuel cell modeling, we may de-
scribe so far only one half of the processes in the
battery, namely the half-cycle of discharging in a
proper way; in this half cycle we should keep the
chemical input ¢(¢) at zero or a very small value. The
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other half-cycle, the loading (charging) process, we
may approximate so far only by switching on the
chemical input and keeping it on high level for a
certain time in order to fill the chemical depot, then
switching it off again, returning to the discharging
cycle. The reverse cycle in which the model works
backwards, which results by changing the sign of
parameters, e.g. d — — d needs still further inves-
tigations.

5. Modeling battery networks, optimization and aging

5.1. Networking batteries and problems
of optimization

There are many possibilities to connect batter-
ies, however practically the simple parallel Kirchhoff
networks are of main interest In order to give an
example for optimization of battery systems, let
us consider a stochastic caricature of managing a
battery system. We study a system of active ele-
ments (batteries) consisting of a constant number N
of elements having in quantitative respect different
properties measured by a number G; and we consider
a finite set of s different kinds of cells:

G1,Gy,...,Gj, ..., G 41)

assuming that we have N, batteries in the class G1, N;
batteries of the class G; etc. We start an optimization
process like the evolutionary game studied by Man-
fred Eigen [33, 34]. We replace elements with the
rate R; and consider a destruction of elements with
a rate D;. By removing a bad element with a low
valuation and replacing it by a copy of a good ele-
ment in the set [33, 34], we come to an improvement
of the functioning of the whole system. Instead of
replacing, we may of course just recharge it. The dy-
namics of this process is such that all batteries which
are better than the average, i.e.

G;> Y NGi/ Y N;

will increase their fraction x; and all other will de-
crease it, what leads to the dynamics for the fractions
X; = ]V, / N:

(42)

X = C(Gi— <G>) > X,
Gi=R;,—D;,

<G> = ZG,’X,’.

It may be shown easily that the average <G> in-
creases, i.e. the system improves. This leads in the
long run to an increasing average of quality of the
whole system. The problem of replacing old or de-
fect batteries in a battery system in an optimal way

(43)
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may be solved by means of evolutionary algorithms
[35-37]. The problem is related to the refueling of
reactors. Strategies for solving the refueling problem
have been developed in the 90ths for the optimiza-
tion of power stations. Power stations are running
by using certain fixed number of burning elements
which have to be replaced for time to time by a fresh
one [35]. This quite difficult problem may be suc-
cessfully attacked by evolutionary algorithms. The
problem of refueling or replacement of batteries in
a network belongs mathematically to the same class
and may be attacked therefore also by evolutionary
algorithms.

5.2. Models including age as a dynamical variable

During a battery lifetime, its performance or
“health” tends to deteriorate gradually due to irre-
versible physical and chemical changes that take
place with usage (see Fig. 13). The physico-chemical
reasons for aging are not yet fully explored. A study
of Grolleau et al. [38] finds that the loss of lithium
at the electrodes is the main aging mechanism [38].
Here we discuss only the question how to model ag-
ing processes. To ensure accurate State-of-Charge
(SoC) calculation while a battery ages, the changes
that take place in a battery over potential and Elec-
tro-Motive Force (EMF) behavior need to be fully
understood [1].

Aging is a new concept in the theory of dynami-
cal systems, which needs to introduce a new variable
T =1 — Iy, the internal time or lifetime. The notation
gives already a hint to the close relation to living
systems. In standard dynamical models, we have
only one time as a variable and we study systems
of differential equations for the set of variables x;(z).
However, the dynamical systems to be studied here
have an external time and a life time since they are
aging.

In Sec. 1, we demonstrated on the example of
experiments, how repeated charging and un-charging
lead in combination with aging processes to quite
typical changes in the time-dependence of voltage,
current and other parameters including efficiency.

Figure 14 shows a simulation of a charging, un-
charging process, i.e. periodic changes between a
normal and a low input, accompanied by a slow ag-
ing of the battery. The aging process we simulated
in the calculations is based on our battery model by
a slow linear increase of internal damping c,(t) =
= ¢,(0) 4 0.00001¢ of the battery.

For systems having a life cycle, an additional
variable T plays a role, where T > 0 is the age between
birth at T = 0 and death at some finite value of 7. In
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2. Cycling aging results

-
Scenario 1 - Cell.1
_______ ——
Scenario 1 - Cell.2

- "
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.
Scenario 3

Aging time / month 11 13

b

Fig. 13. Typical aging curves: (a) Decay of the efficiency due to increase of internal loss according to the present theory;
(b) Empirical results about cycling aging [38]

the simplest case, only the parameters of the batteries
depend on time, e.g.

1
L(T)L;t :7R0 I+Ue7Vc+d(T)€], (44)
d—j =qg.—c(t)e—d(t)el’.

In our problem, birth means that a battery is inserted
into the system and death means that a battery is re-
moved from the system. In the simulation shown in
Fig. 14, we assumed specific (given) regimes for the
t-dependence. Within our model of efficiency, we
may assume e.g. that the internal losses increase in
time linear or exponential in time

ce(t)=co(1+(t/71)),c. (t) = coexp (T/T1). (45)

For the second example, Fig. 13(a) shows how the
efficiency decreases within the lifetime of the bat-
tery; in Fig. 13(b) we show an empirically found
loss off the voltage of a battery. In simplest case,
we may stay within the old system of differential
equations and consider only the parameters as de-
pending on internal time. This is an approximation
and Fig. 13(a) has been obtained this way. In a
more complete theory, a life time-dependence leads
to partial differential equations, as is well known
from the theory o aging of living systems [33, 39,
40]. In the simplest case, we may model such a
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Fig. 14. Simulation of typical battery regimes including aging
by means of our battery model. We assume a periodic change
between the input g, = 0.8 to g, = 0.2 and vice versa and a
small linear increase of the internal losses. We show (from
below), the internal current in the circuit (below — green), the
chemical energy in the depot (blue), the Open Circle Voltage
(red), the total voltage (above — violet) for the time r = 0—
800 assuming changes of the input strength g, at # = 100, 200,
300, 400, 500, 600, 700 (color online)
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system with the partial differential equations of so-
called McKendrick—Von Foerster type [33, 39]:

atxi (tyr) —l—a»cX,’ (tvt) =—d; (T) Xi (t’T) ’ (46)
x;(,0) = gd’cb,- (V) xi (1,7), 47)

x(0,7) =@; (1), i=12,...,n

Here d;(t) is the death rate of a battery depending on
age, which is a characteristic function of batteries,
further b;(t) is the birth rate. Note that we do not
have own results based on the applications of Mc
Kendrick—Von Foerster type of equations to battery
aging, we just wanted to point out here the appropri-
ate mathematical tools.

Conclusion

Analysis of examples shows, without claiming
for any completeness:

1. The conversion of chemical to electrical en-
ergy by isothermal processes is evidently not subject
to “fundamental” upper bounds, like the Carnot up-
per bounds for the conversion of thermal to higher
energy forms. As we have shown by two examples,
efficiencies higher than 50 percent need as a rule
the exploitation of nonlinear effects and a complete
qualitative analysis of the properties for the nonlinear
dynamical system.

2. The problem of optimization of efficien-
cies is connected with nonlinear dynamical systems
with many system parameters. For such a dynam-
ical multi-parameter problem, the purely empirical
search based on “trial and error” is like a “search in
the fog” and is at the end not a promising strategy.
This leads to the request for more advanced search
strategies and in particular for strategies which may
be formulated and investigated analytically [35,36].

3. About load and efficiency: We analyzed sim-
ple models (macro models) of electrical circuits with
three dynamical variables modeling the conversion
of chemical into useful electrical energy. Sometimes
models allow an analytical solution which may be
used in particular for optimization. Some models
show interesting properties which qualitatively re-
produce in particular the decay with increasing load,
which we expect intuitively and which was found
also in several experiments [24]. Typically, the
efficiency increases with the load and reaches a max-
imum near to an optimal load. High values above
50 percent may be reached only around optimal load
and including the effect of special nonlinearities.

4. About aging and networking: Aging is a typ-
ical property of batteries, which may be modeled in
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several ways. As an optimal choice of parameters for
the elements and for networking it is recommended
to find by stochastic evolutionary strategies [36].

Note added in May 2022: Correcting again and
polishing this working paper written in first draft
in 2019, the present authors feel obliged to follow
and to complete the ideas suggested by our unforget-
table friends and colleagues Vadim Anishchenko and
Lutz Schimansky-Geier, who passed away within
one and a half year after our meeting in Rostock
not directly from, but within the turbulent times of
the pandemy COVID19. We will never forget these
unique personalities, gifted teachers, full of temper-
ament and passion for nonlinear dynamics. We feel,
it is our duty to go further the path, these great sci-
entists paved into the wood of nonlinear stochastic
processes in complex dynamical systems, like bat-
teries and fuel cells as dynamical systems playing a
central role in modern time.
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