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RADIAL AND LOGARITHMIC REFINEMENTS OF
HARDY’S INEQUALITY

© F. GESZTESY, L. L. LITTLEJOHN, I. MICHAEL, M. M. H. PANG

Versions of Hardy’s inequality involving radial derivatives and logarithmic
refinements are deduced.

§1. Introduction

To describe the principal aim of this note, we start by recalling the classical
Hardy inequality

/\ vnwPaes "2 [uip@p e, (1)
Q
valid for f € C§°(2), @ C R"™ open, n € N, n > 2 (interpreting the right-hand
side of (1.1) as zero if n = 2, and hence rendering it trivial in that case). The
following extension of Hardy’s inequality (in the special case where  equals
By, (zo; p), the open ball in R™ of radius p > 0 centered at xy € R™), involving
logarithmic refinements, was derived in [7],

JCACRE:
Q

/\x 20| £( )\2{ 2+§iﬁ1nk (v/l2— o))~ }d

j=1k=1

(1.2)

valid for f € C§°(€), assuming that @ C R", n € N, n > 2, Q is open and
bounded with z¢ € Q, m € N, and the logarithmic terms Ing(y/|z—xo|), k € N,
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are recursively given by
Iy (v/]z—xo|):= In(y/|z—x0]), 0<|z—z0| <7,
Ing 1 (y/|z—2z0]):= In(Ing (v/|z—x0])), O<|z—m0|<7/CKt1, EEN,

fory >0,z € R"\ {2}, n € N, n > 2, with 0 < |z — z¢| < diam(Q) < v/em,
where

(1.3)

er: =1, exr1:=e*, keN. (1.4)

We denote Z] 1(+) := 0 and H2:1(~) := 1, so when m = 0, o = 0, (1.2)
formally agrees with (1.1).

Due to the incredible amount of work on the classical Hardy inequality,
we cannot possibly do justice to the existing literature and hence only re-
fer to some of the standard monographs on the subject such as [3, 15, 16],
and [17]. In addition, we note that factorizations in the context of Hardy’s in-
equality in balls with optimal constants and logarithmic correction terms were
already studied in [6, 10], based on prior work in [12, 13], and [14], although
this appears to have gone unnoticed in the recent literature on this subject.
Higher-order logarithmic refinements of the multi-dimensional Hardy—Rellich-
type inequality appeared in [1, Theorem 2.1], and a sequence of such multi-
dimensional Hardy—Rellich-type inequalities, with additional generalizations,
appeared in [19, Theorems 1.8-1.10].

Our principal goal in this paper is to offer an improvement of (1.2) by
replacing the gradient with the radial derivative 0,, given by

=|z|7 2V, zeR"\ {0}, r=lz|, neN, n>2 (1.5)
Obviously,
(VO @) = [0 f) ()], = eR*\{0}, [ e Cg°(R"). (1.6)

With (1.6) in mind, we will show that (1.1), (1.2) still hold when V is
replaced by 0,. More precisely, we will prove the inequality

n— 2)2
[1en@ras> "0 [a2iswp e, (1)
Q Q

Valid for | € CO (Q), n € N, n > 2 (again, interpreting the right-hand side
as zero in the case where n = 2), and

/\8f ()] d"z

/\x vol 211 (@) \2{ 2+§iﬁlnk (k= o)) }dnx,

j=1k=1

(1.8)
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valid for f € C§°(€), assuming that Q@ C R", n € N, n > 2, Q is open and
bounded with zy € 2, and v > 0 satisfies 0 < |z — 29| < diam(Q?) < v/en,
m € N.

While (1.7) is well known, see, for instance, [2, p. 19], [3, Theorem 1.2.5] (in
the case where p = 2, ¢ = 0), [5, 7], and [18], inequality (1.8) is the principal
result of this paper.

§2. Refinements of Hardy's inequality

In this section we present our radial and logarithmic refinements of Hardy’s
inequality.

We start with some preliminary results. We introduce differential operators,
Ty on C§°(Q2) if 0 ¢ Q, respectively, C5°(Q2\ {0}) if 0 € @, & C R™ open, and
T, m € N, on C§°(Br(0;p) \ {0}), n > 2, as follows:

To:=0,+[(n—2)/2)|z|~", m =0, (2.1)

m.j
Tn:=0,+[(n—2)/2]2| '+ (1/2)2[7' ) [[Mox(y/I2)] ™, meN. (2.2)
j=lk=1
Then their formal adjoints (with respect to L?(Q) := L?(Q;d"z)), denoted by
T," and defined on C§°(R), respectively, on C5°(Q \ {0}), and T,f, m € N,
defined on C3°(By,(0; p) \ {0}), are given by (cf. (1.3), (1.4))

Ty = =0 — (n/2)la|™", m=0, (2.3)

m j
= =0 — (/2] + (1/2) 27 Y [[Mme(v/1e)] ™", meN. (24)
j=1k=1
Remark 2.1. In the following we will employ a standard convention when
repeated use of differential expressions is involved: given differential expres-
sions Sj, 7 = 1,2, their product S1S5, is used in the usual (operator) sense,
that is,

(8152/)(x) = (51(52f)) (=), (2.5)
for f in the underlying function space, and similarly for products of three and
more differential expressions. o

Next, arguing inductively, we obtain

m

Ol ™ T /|2 )) ™" = ] H I (/)]
k=1

m—1

m J
= —[a[ 7 T Mox(v/[))] " + |2/~ H Iy (v/[))] ™" > T e/ |2))™
k=1

7=1 k=1
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+ |27 [ g (v/12D) 2, m € No == NU {0}, (2.6)

where again 22:1( =0, -, () =1
Identity (2.6) allows us to prove the following lemma, which will be useful
in establishing Theorem 2.4.

Lemma 2.2, Letn € N,n > 2, and let m € Ny. Then

m—+1 m+1
Tl ™ [T Mok (y/12D] ™" + 271 T Dne(y/ |25

= —lz| 7 T oo/ l2)]) 2
k=1

Proof. First, we have

m+1 m+1

Tolz™ T tne(y/12)) " = =0, |2~ T [ne(v/ 1))~
k=1 k=1
m—+1
— (n/2)|z|7* [T (e (v/12))] ™ (2.8)
k=1
m+1 m J
+(1/2)]2[7 T] e (y/l2D] ™" D [Tk (/1))
k=1 j=1lk=1
and
m+1 m+1
2| =" [T e (y/|2)) " T = || ™" [ ] e (/|2 )0
k=1 k=1
m+1
+[(n—2)/2]«[7? T] Ini(v/|2)) ™" (2.9)
k=1
m—+1 m J
+ (1/2)[ 7 T Mow(y/|=)) ™" Y T ] How (/)]
k=1 j=1lk=1

Thus, applying (2.6) yields

m+1 m+1

Tl ™" [T Mo/ l2D] ™"+ lel = T Mok (/)] ',
k=1 k=1
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m—+1 m—+1
= (= alal™ T e/ 21~ + 2~ TT e/ 2] "0 )
k=1 k=1
m+1 m+1 m
=l T 0meto/ DI + o1 TL 0o/l 3 T ety
k=1 j=1k=1
m-+1 m—+1 m J
= (lo1= TT e/l ! =l TL0m 1™ 32 T T b))
k=1 j=1k=1
m—+1 m—+1

wvﬂmwwﬂwWHmww*
k=1

m+1 m J
+ 27 T ] Mow(y/ )] D T [ Howe (/)]
k=1 j=1k=1
m+1
= —[a| 7 T Mox(v/12)] . (2.10)
k=1
0
Lemma 2.3. Letn € N, n > 2, and let m € Ny. Then
T T = =07 — (n— 1)|z[718, — [(n — 2)/2]*|«| 7
(2.11)

= (/)72 Y T [ e (y/ )2

j=1k=1
Proof. We use induction on m € N. For m = 0, we have
Ty To = (= 8 — (n/2)]| ") (8, + [(n — 2)/2]J«| ")
= 02— (n—1)|z|7'0, — [(n — 2)/2)*|z| 2. (2.12)

For m = 1, a direct computation employing (2.6) yields

77y = (15 + (12l I/l ) (T + (/2 Iny/jal)] )
=TTy — (2l (/2] + (/] (/2] 2 (213)
= =97 — (n— D279, + [(n — 2)/2*|x| 7 — (1/4) |z ~*[In(y/[])]

Assuming that (2.11) is true for m € N, we then apply Lemma 2.2, obtaining
m+1
T

T = (T + /2l T g/ 2] )
k=1
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m—+1
% (T + (/21" T (/1))
= m+1
= Ty + (1/2) (Tl T [t/ )]~
m—+1 = m—+1
o Jol ™" TT e (y/I2D] ™ Ton ) + (1/4) 2l 2T e (/1)) 2
! m+1 k717n+1
=Tk T (1/2) 22 T [ g (/)] >+ (1/4) 2l =2 T /0]
ki;+1 k=1
= Ty T — (1)~ [T Mg (/)]
k=
= —02 = (n = 1)~ 0, — [(n — 2)/2][a| (2.14)
m+1l j

~ (1/4)]] Z T e/l O

Given these preliminaries, now we can show the following result.

Theorem 2.4. Let Q C R" be open, n € N, n > 2
(i) Then, for all f € C§°(2),

n— 2)2
Jiwp@reez [1op@pas> "2 [ 2w e @)
Q Q Q

(ii) Let m € N, and suppose in addition that & C R™ is bounded with zy € Q.
Assume that v > 0 is such that 0 < diam(Q) < v/em, where ey, is as in (1.4),
and let Ing(v/|z|),k € N, be as in (1.3), (1.4). Then for all f € C3°(R2) we

have

[1@n@ias > [opePkea
0 Q

2 mJ
/yx—xo\ 21 £( )\2{( +i2ﬂlnk (v/|x — 2o])]™ }d”x. (2.16)

j=1lk=1

Proof. Tt suffices to focus on item (ii) only. As a first step we establish the
latter in the special case where Q = B,(0;p), zo = 0, with p,y > 0 and
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p < v/em. Thus, we will prove that, for all f € C§°(By(0;p)),

[ @pwrasz [ opwras

Br(0;p) Br(0;p)

N AECRES 2+§i1j1nm/|x\ L.

By (03p) J=lk

(2.17)

Define T}, and T} as in (2.1)-(2.4), respectively. For simplicity, we will work
with f € C3°(Bn(0;p) \ {0}) for m € N. However, all integrals extend to

f € G52 (Bn(0;p)).-
By Lemma 2.3,

o< [ IEan@P

By (0;p)

/ F@ T3 T ) () d's

n(0;0)

/f—82f><>dx—<n—1> | @@
n(03p) By, (03p)

—[(n—2>/212 [ s@p s

Br(0;p)

m

J
—amY. [ i) 0 Lo (2.18)

I=1B,(0:p)
Using the identity

| T@@nwes=— [ jenwraes

By (0;p) B (05p)

(1) / 2| F@@Of) @) &, | € C(Ba(0: ),

Br(0;p)

(2.19)

we see that (2.18) becomes

0< / (T f) (@) 2 d"a

B (05p)
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- / 100 F) (@) d" — [(n — 2) /2] / a2 @) P (2.20)

By (0;p) Bn(0sp)
—m Y / 2] 2|1 ( PHlnm/m
I=1 B, (0sp)
implying
/ (0, ) () "
B (0;p)
e 1 (2.21)
> [ or{ T2 IS T el o
Bn(030) J=1k=1

Next, let Q = By, (xg; p) C R™. The proof of (2.16) is entirely similar to that
of (2.17), upon replacing T}, by

Ty := Or + [(n —2)/2]|z — $0|71

A " (2.22)

+ (1/2)|x — x| Y [ [ nw (/|2 — wo)] 7,

j=1k=1
and similarly, replacing Tt by
T = 00 — (/D)o — 0]

m J (2.23)

+ (1/2) |z — ol Y [ [ [k (/ |2 — o))

j=lk=1

Then it follows that
Tt voTmao = =07 — (n— V|z — 20| ' 80r — [(n — 2)/2]% & — mo|

™m,xo

moJ 2.24
(0l — w02 S [[ e/l — o], (224)

j=1k=1

and continuing as in the proof of (2.17) yields (2.16) for Q@ = By, (xo; p).

For an arbitrary bounded domain @ C R"™ with some fixed zy € €2, we
pick some p > 0 such that 0 < diam(Q) < p < 7y/ep. Since CF(Q) C
C(Bn(zo; p)) (extending functions in C{°(2) by zero outside (2), inequal-
ity (2.16) follows. O
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Remark 2.5. (i) Upon referring to the spherically symmetric case and oscil-
lation theory for the second order differential expression

R | 1
_W_E_Eznlnk (v/m)] 2, (2.25)
j=1k=1

with 7 > 0 for m = 0 and 0 < r < y/ey, for m € N, discussed in [11], one
verifies that the constants (n — 2)?/4 and 1/4 in (2.16) are optimal.

(ii) We note that our proof of (2.17), most likely, is not the shortest possible
one, but brevity was not the point we had in mind. Instead, as was demon-
strated in [7] (see also [18]), the value of our strategy of proof, relying on
factorizations as in (2.11), lies in the wide applicability of this approach to
higher-order inequalities, such as the well-known Rellich inequality and be-
yond. This will be more systematically explored elsewhere [8]. o

We conclude with some applications of (2.15), (2.16) to Schrodinger oper-
ators with strongly singular potentials. Let J C N be an index set, and let
{z;}jer CR", n e N, n>2 bea set of points such that

inf |z; — 2y 2.26
inf oy —ay] > (2:26)
J#3
for some gy > 0. In addition, let m € N, let £;,n; € R, 5 € J, and let
57 77 §7T] 6 (07 OO) With

&1 <E<(n—2)%4, |nj|<n<l/4, jE€J, 0<eo<4y/em, n=3. (2.27)

Next, we introduce the potential

V4
5 m
Ze Ola—j| [m-i'%XBn (2j:0/4) (T Z (g, (v/ |z —a;])]

jeJ =1 k1
£ € R\ {z;}jes, n >3, (2.28)

with yas the characteristic function of M C R™.

Then an application of (2.16) (actually, (2.17) with p = £¢/4) combined with
[9, Theorem 3.2] shows that W (and hence, any scalar potential V' satisfying
V| < [W|+ Wy a.e. on R”, with 0 < Wy € L>*(R")) is form bounded with
respect to Hy = —A, dom(Hy) = H?(R") in L?(R"), n > 3, with form bound
strictly less than one (cf. also [4, p. 28-29], and the example in [9, p. 1033
1034]). In this context we recall that dom (HS/Q) = H'(R"), and that C§°(R")
is a form core for Hy.
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Finally, when we replace (2.28) by

m £

W(z)=> e Tlnixg, @ e (@) Y [[Ink(y/1z = 20)] 2,
JjeJ =1 k=1

z € R\ {z;}jer,

(2.29)

with 6,v,m € (0,00) and |n;| < n < 1/4, j € J, 0 < g9 < 4v/ep, these form
boundedness considerations with respect to Hy = —A, dom(Hy) = H?(R?)
in I2(R?), with form bound strictly less than one, extend to the case where
n=2.
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