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GENERALIZED FESENKO RECIPROCITY MAP

© K. I IKEDA, E. SERBEST

The paper is a natural continuation and generalization of the works of
Fesenko and of the authors. Fesenko’s theory is carried over to infinite
APF-Galois extensions L over a local field K with a finite residue-class
field kx of ¢ = p’ elements, satisfying p,(K*) C K and K C L C K,a,
where the residue-class degree [r. : kx| is equal to d. More precisely, for
such extensions L/ K and a fixed Lubin—Tate splitting ¢ over K, a 1-cocycle

Q(LW/)K : Gal(L/K) — K*/Np, Ly % %(L/I()/YL/LO

where Lo = L N K™, is constructed, and its functorial and ramification-
theoretic properties are studied. The case of d = 1 recovers the theory of
Fesenko.

Let K be a local field (that is, a complete discrete valuation field) with a
finite residue-class field kg of ¢ = p/ elements. Assume that pp(K5P) C K. We
fix a Lubin—Tate splitting ¢ over K (see [10]). In [1, 2, 3], Fesenko introduced
a very general non-Abelian local reciprocity map

O Gal(L/K) = Ug 1 [Vijk

defined for any totally ramified infinite APF-Galois extension L/K satisfy-
ing K C L C K,, which generalized the earlier non-Abelian local class field
theories of Koch-de Shalit [10] and Gurevich [7]. In [8], we studied the ba-
sic functorial and ramification-theoretic properties of the reciprocity map of
Fesenko.

In this paper, which is a natural continuation and generalization of [1, 2, 3]
and [8], we extend the theory of Fesenko to infinite APF-Galois extensions
L/K satistying K C L C Ka, where d is the residue-class degree [k, : kk].
More precisely, for such extensions L/K, we construct a 1-cocycle,

®\¥) . Gal(L/K) — K* /Ny, kL * US 1 ey / Yi o

L/K
where Ly = LN K™, and study its functorial and ramification-theoretic prop-
erties. Note that the case where d = 1 recovers the theory of Fesenko.

Key words: local fields, higher-ramification theory, AP F-extensions, Fontaine-
Wintenberger field of norms, Fesenko reciprocity map, generalized Fesenko reciprocity
map, non-abelian local class field theory.

118



GENERALIZED FESENKO RECIPROCITY MAP 119

The organization of this paper is as follows. In the first section, we briefly
review the necessary background material from Fontaine-Wintenberger theory
of fields of norms. In the second section, we introduce the generalized Fesenko

reciprocity map Q(L";)K of an extension L/K that is an infinite APF-Galois
extension satisfying K C L C K a, where the residue-class degree [xr, : kx] is
equal to d, and study its functorial and ramification-theoretic properties.
The material and results of this paper play a fundamental role in our con-
struction of non-Abelian local class field theory [9], which generalizes also the

Laubie theory [11].

Notation. Throughout this paper, K will denote a local field (a complete
discrete valuation field) with finite residue field Og /px =: kx of qx = q = p/
elements, where p is a prime number; here O denotes the ring of integers in K
with a unique maximal ideal pg. Let v denote the corresponding normalized
valuation on K (normalized by v (K*) = Z), and let v be the (unique)
extension of v to a fixed separable closure K®¢P of K. For any sub-extension
L/K of K*°? / K, the normalized form of the valuation v |, on L will be denoted
by vr,. As usual, we let K™ denote the maximal unramified extension in K5P,
and K denotes the completion of K™ with respect to vgn»-. We fix a Lubin—
Tate splitting o = @ over K. The fixed field of the Lubin-Tate splitting
@ is denoted by K. Finally, let (7g)xcpc K, be the canonical sequence of
norm-compatible prime elements in finite subextensions £/K in K,/K. This
determines a unique Lubin—Tate labeling over K (see Subsection 0.2 in [10]).
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§1. Preliminaries on Fontaine—Wintenberger field of norms

For a brief review of AP F-extensions and Fontaine-Wintenberger field of
norms, we refer the reader to [8], and for detailed proofs to [5, 6, 12].

Let L/K be an infinite, Galois, arithmetically profinite (in short APF)
extension such that the residue-class degree [k, : kK] is equal to d and K C
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L C K ,4; in the terminology of Koch-de Shalit in [10] and Laubie in [11], L is

compatible with (T, ), where T denotes the intersection field LNK,. Note that,

in general, T'/ K is not a normal extension! We denote LSK) =LNK" = K]".
If no confusion is possible, we denote LE)K) simply by Lg. So, we have the

following diagram:
Ksep

Kwd

Knr Kiﬂ

-
A

nr
Kd

K

Remark 1.1. Note that ¢/ = ¢? is a Lubin-Tate splitting over Lo = K]".
Therefore, by Proposition 1.2.3 in [12] or by Lemma 3.3 in [8], L/Lg is an
infinite totally ramified APF-Galois extension satisfying Ly C L C (Lg),r.
Thus, the Fesenko theory developed in [1, 2, 3] and [8] works for the extension
L/ L.

Since L/T is an unramified extension, the following statement is true.

Lemma 1.2. The field of norms X(L/Lg) is an unramified extension of the
field of norms X(T/K).

Proof. In fact, there exists a natural isomorphism X(L/Lg) = X(L/K) that
identifies X(L/Ly) and X(L/K) (see Subsection (5.6) of Chapter III in [4]).
Now, X(L/K) is a Galois extension of X(7'/K) with the corresponding Galois
group isomorphic to Gal(L/T) (see [8] and [12]). Since kx( k) =~ k1 and
Kx(T/K) = T, it follows that

[5x(r/ 1) ¢ Bx(r/10)] = [X(L/K) : X(T/K)],
because L/T is an unramified extension, which proves that X(L/K) is an
unramified extension of X(7'/K). O

Now, since the Lubin-Tate splitting ¢ over K is fixed, the element II .7/ =
(re)kcrcr € X(T/K) is a canonical prime element of the local field X(T'/K).
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Thus, by Lemma 1.2, [T,/ is a prime element of X(L/Log) as well. Moreover,
the following is true.

Lemma 1.3.
Wor/k = Wyrnyr,- (1.1)

Proof. Indeed, for the Lubin-Tate splitting ¢’ = % over Ly = KJ", there
exists a unique element (7r,5)rocroEcLoT=1 € X(L/Lg). Since LoE/E is an
unramified extension, it follows that mr,g = g for each K C E C T. Thus,
(1.1) is fulfilled. O

The completion X(L/K) of the maximal unramified extension X(L/K)""
of the field of norms X(L/K) is identified with the field of norms X(L/K) =
X(L/Lg).

§2. Generalized Fesenko reciprocity map

The main references for this section are [1, 2, 3] and [8].

Fix a Lubin-Tate splitting ¢x = ¢ over K. Our aim in this section is to
generalize the reciprocity map @%} 5 of Fesenko, see [1, 2, 3] and [8], defined
for infinite totally ramified AP F-Galois extensions M /K satisfying K C M C
K, to infinite APF-Galois extensions L /K with residue-class degree [ky, :
kk| = d and satisfying K C L C Ki. In what follows we shall keep the
notation introduced in [8] and in the preceding section.

We recall that, for the extension M/K as above, the diamond subgroup

U§(M/K) of the group Ui(M/K) of units in the ring of integers of X(M/K) is
defined by

o _ -1

X(M/K) Prf( (UK) ’

where Pry : Ugg( — U}z denotes the projection map on the K-coordinate

M/K)
of U}i( M/K)" More generally, for a given infinite AP F-Galois extension L/K
with residue-class degree [k, : kK] = d and satisfying K C L C K, the

. N 3 Lo . .
diamond subgroup U§~g (LK) of the group UX( LK) of units in the ring of integers

of X(L/K) = X(L/Lg) can be defined naturally as follows.

. o
Definition 2.1. UX(L/K) tt oup Uy
ring of integers of the local field X(L/K) whose K = Ly-coordinate belongs
to Ur,. That is,

is the subgroup of the group U}i( ) of units in the

2 =Us
X(L/K) X(L/Lo)
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In Fesenko’s theory, which was described in [1, 2, 3] and in detail in §5 of
[8], an arrow qbs\ﬁ} - was defined for the extensions M/K, where M/K is a

totally ramified APF-Galois extension satisfying K C M C K,. Now, as a
first step, we generalize this arrow to infinite AP F-Galois extensions L of K
having residue-class degree d and satisfying K" C L C K 4, and construct a

generalized arrow ¢(L¢;)K for such extensions L/K as follows. There exists an
isomorphism
Gal(L/K) = Gal(Lg/K) x Gal(L/Ly) (2.1)
defined by
o (0|5, Mo) (2.2)
for every o € Gal(L/K), where o |1,= ¢™ for some 0 < m € Z.

Remark 2.2. (i) Let M/K be a Galois subextension of L/K. Let M, =
M N K", Then, the square

Gal(L/K) —— Gal(Lo/K) x Gal(L/Ly)

rele (resarg,resar)

Gal(M/K) —— Gal(My/K) x Gal(M/M,)
is commutative. Now, for o € Gal(L/K), we can find 0 < m, m’ € Z such that
0 o= ¢™ and (¢ |n) |mo= @™ . Thus, o™ |p= @™ |u, and the identity
(o™™0) |pm= @™ (0 |ar) is satisfied.

(ii) Let F/K be a finite Galois subextension of L/K. Suppose L(()K) =

LN K" and LSF) = L N F™ . Then, the square

Gal(L/F) —— Gal(L{" /F) x Gal(L/L{")

inc'i (rengK) ,inc.)

Gal(L/K) —— Gal(L{)/K) x Gal(L/L{))
is commutative. Now, for any o € Gal(L/F), we can find 0 < m, m’ € Z such
that o |, m= ¢F and o [, 4= @ﬁ/. Thus, 7 |, 0= @7 and the identity
0 0 0
opo = @;(m/o is satisfied.

By Proposition 1.2.3 in [12] or by Lemma 3.3 in [8], L/ Ly is a totally ramified
APF-Galois extension with Ly C L C (Lg),s, where ¢/ = ¢? is a Lubin-Tate
splitting over Ly by Remark 1.1. Thus, the map

¢5:“;)K : Gal(L/K) — K™ /[Ny /gLy % ng(L/K)/UX(L/K) (2:3)
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can be defined by

¢(L¢;)K(0') = (W?.NLO/KL(;(, (UE')UX(L/K)) R (2.4)

where ¢ € Gal(L/K) is such that o |r,= ¢™ for some 0 < m € Z, and

U=(ug) € Us(L/10) satisfies

1—p? _ rple™ ™o)1
U—"v = 1‘[@,;L/L0 , (2.5)
where Tl ;7. /1, is the canonical prime element of the local field X(L/Lg), which
is the canonical prime element II .7/ of the local field X(T'/K) by Lemmas
T/
1.2 and 1.3. Thus, (2.5) can be reformulated as

1—p? _ po—1
Uu-—¢ _H;';L/Lo’ (2.6)
because HZ;T/K = .7k Moreover, the solution U = (“E) € UX(L/LO)’
which is unique modulo Ux(s,/x, satisfies Prr,(U) = uz, € ULy In fact,

Prr,(Il,.1/1,) = 7K by Lemma 1.3, whence PrLO(HZZi/LO) =715 = 1g.

d
Hence, PrLO(UI*“’d) = PrLO(HZ:i/LO) = 1k yields u%_‘p = 1k, so that uz, €
) 0

UL, because Lo N (Lo)yr = Lo. Now, it follows that Prp,(U) = up € Ug,.

Thus, U = (uz;) belongs to U§(L/K), by Definition 2.1.

Remark 2.3. We can reformulate the definition of the generalized arrow
¢(£ﬁ;)K : Gal(L/K) — KX/NLO/KL(;( X U}%(L/K)/UX(L/K)

for the extension L/K as follows:

(o) = (FR-NLo /L 8], (67™0) )
for every o € Gal(L/K), where o |1,= ¢™ for some 0 < m € Z.

There is a natural continuous action of Gal(L/K) on the topological group
K* [Ny kLg% U%(L/K)/UX(L/K)’ defined by Abelian local class field theory

on the first component and by formulas (5.5) and (5.7) in [8] on the second
component:

(@0)" = (a@"‘,ﬁw’m") - (a, UW’“”) (2.7)
for every o € Gal(L/K), where o |1,= ¢ for some 0 < m € Z, and for every

a € K* with @ = a.Np /gLy and every U € U§(L/K) with U = UUx(L/K)-
Below we shall always view K* [Ny /g Lg X U}é;( )/UX(L/K) as a topological

Gal(L/K)-module.

L/K
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Theorem 2.4. Let L/K be any infinite APF-Galois subextension of K i/K
with residue-class degree d. Then the generalized arrow

¢(L‘0/)K : Gal(L/K) — K™ [Npy/icLg X Ug ey [ Ux(1/ k)

defined for the extension L/K is an injection, and for every o,7 € Gal(L/K),
the cocycle condition

Bk (07) = B (B ()7 (23)
is satisfied.
Proof. The injectivity of the arrow (2.3) defined by (2.4) is clear from the
canonical topological isomorphism (2.2) combined with Abelian local class
field theory and Theorem 5.6 of Fesenko in [8]. More precisely, let ¢(L¢;)K(o) =
(7%, (ug)), where d | m and (ugp) € Uxr/1o) = Ux(r/K)- Since d | m, the
action of o is trivial on L. Since (uE)“’d*1 =(1z) = Hgfi/LO, o acts trivially
on the prime elements of finite subextensions between Ly and L. Thus, o is
the identity element of Gal(L/Lg). Now, for 0,7 € Gal(L/K), with o |1,= ¢™
and 7 |,= ¢" for some 0 < m,n € Z, we can use the alternative definition of

the generalized arrow ¢(L¢;)K, introduced in Remark 2.3, to show that

BN (07) = (T Ny L 8577, (0 Vo))
= (3 Nig i L) (W Nio L), 65510 (07 0)0) (97 7)2 ")
= (7R-Npo L 8570, (0770) ) (w5 Npo e I 67, (977"
= 81 ()8 (1)
by [8, Theorem 5.6] and by the definition of the action of o € Gal(L/K) on
3 ) (1) € KX [Ny L x US (150 Ut/ )» defined by (2.7). 0

Now, we immediately arrive at the following result.

Corollary 2.5. Let a law of composition x be defined on im(¢5.ﬁ)K) by

_ _ I (- BN
@0) * (5, V) = (@b, TV ) ) (2.9)

for (@, U), (b,V) € im(gb(Lg;)K), where @ = a.Np, /Ly and b= b.Ny /xL{ €
K* [Ny, /kLg with a,b € K*, and for U= UUx/k) and V= V.Ux k) €
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L/K /UX (L/K) with U, §/ S UO(L/K)

under %, and the map ¢L/K induces an isomorphism of topological groups

Then im(¢5.ﬁ)K) is a topological group

8 ) : Gal(L/K) = im(¢7)), (2.10)

where the topological group structure on im(¢(L“0/)K) is defined with respect to
the binary operation * defined by (2.9).

Recall that, for any infinite APF-Galois extension L/K and every —1 <
u € R, the uth higher ramification subgroup Gal(L/K), of Gal(L/K) in lower
numbering is defined by

Gal(L/K), = Gal(L/K)#r/x®)

where —1 < ¢y /g (u) € R is the number defined by formula (3.1) in [8], and

that, as usual, the ¢y /g (u)th higher ramification subgroup Gal(L/K)#r/x(w)
of Gal(L/K) in upper numbering is defined to be the projective limit

Gal(L/K)?r/<t) = lim  Gal(F/K)#r/e (),
KCFCL

see [8, (2.1) and (2.2)]. Now, let E/K be a Galois subextension of L/ K. Then,

finite Gal.
—_——t—
for any chain of field extensions K C F C F' C L, the square
——
finite Gal.
tE o (r k(1)
Gal(F'/K)erx) T Gal(F! 0 B/ K)#rx (W (2.11)
t?’(wL/K(u»J ltig}g (pr/x(u))
tpne(PL/x (W)
Gal(F/K)#r/x(w) Gal(F N E/K)?r/x®)

is commutative. Thus, passing to the projective limits, we see that there exists
a continuous group homomorphism

th(eor/c(w) = lm tiop(en/x(u) : Gal(L/K)#m/K)
KCFCL (2.12)

— Gal(E/K)$r/x®),

which is essentially the restriction morphism from L to E. This morphism
is a surjection, because the objects in the respective projective systems are
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compact and Hausdorff. Furthermore, the square

Gal(L/K) L Gal(E/K) (2.13)

inc.]\ Tinc.
L

Gal(L/Kypsrntn O, o yessn

inc.]\ Tinc.
L u!

/ tE’(LpL/K( )) ,
Gal(L/K)#r/x @) Gal(E/K)#r/KW)

is commutative for every pair u,u’ € R>_; satisfying u < u/. Here, the arrow
rk : Gal(L/K) — Gal(E/K) is the restriction map. Therefore, we arrive at
the following result.

Lemma 2.6. For 0 < u € R, the topological isomorphism defined by (2.1) and
(2.2) induces a topological isomorphism

Gal(L/K), ~ Gal(Lo/K)?w/x® x Gal(L/Lg)#r/x® (2.14)

OdL0>

defined by
o (th (o1 (W) (@), 970 ) = (idr,, 0) (2.15)

for every o € Gal(L/K), with o |p,= tio(tpL/K(u))(a) = "™ |1, for some
0 < m € Z satisfying d | m.

Proof. Note that, for 0 < u € R, Gal(Lo/K)?"/<® is the trivial group
< idg, >, because Lo/K is a finite unramified extension. Thus, for o €
Gal(L/K),, by the commutativity of the diagram (2.13) we have

tZ,(or/x (w))(0) = 0 [1,= idz,,
and in return

o (idLO,tp_mo) = (idg,, 0),
where o |p,= idr, = ¢™ |1, for some 0 < m € Z satisfying d | m. Since L
is fixed by ¢?, we have ¢ ™0 = o, so that (idz,,p ™) = (idz,, o). Now,
the injectivity of the morphism (2.14), defined by (2.15), is clear from the
commutative square (2.13) and from the injectivity of the arrow defined by
(2.2). Thus, it suffices to prove that this morphism is a surjection, which follows
from the triviality of Gal(Lo/K)%2/x® for 0 < u € R, and from the fact that
Gal(L/K), = Gal(L/ L)t/ O
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Now, L/Lg is an APF-Galois subextension of L/K by part (i) of Lemma
3.3 in [8]. Let @1z, : R>—1 — R>_; be the Hasse-Herbrand function corre-
sponding to the APF-extension L/Lg defined by relation (3.1) in [8], which
is piecewise-linear and continuous. So, there exists a unique number w =
w(u, L/K) € R>_1 depending on u, satisfying ¢,/ x(u) = ¢r,/1,,(w), and such
that

Gal(L/Lo)?/x™) = Gal(L/Lo)?"/ % ™) = Gal(L/Lg)..

Thus, Lemma 2.6 can be reformulated as follows. The topological isomorphism
defined by (2.1) and (2.2) induces a topological isomorphism

Gal(L/K)u ~ <idL0> X Gal(L/LO)w(u,L/K)

for every 0 < u € R.

For each 0 < 7 € R, we consider the ith higher unit group Uglg (L/K) of the
field X(L/K), and introduce the group
i .
> _rro
(Vi) = Vcwsm " Uicasey (2.16)

Now, the Fesenko ramification theorem, stated as Theorem 5.8 in [8], has the
following generalization for the generalized arrow gb(L“;)K corresponding to the

extension L/K that is an infinite AP F-Galois subextension of K /K with
residue-class degree [k, : kx| = d.

Theorem 2.7 (Ramification theorem). For 0 < u € R, let Gal(L/K), denote
the uth higher ramification subgroup in the lower numbering of the Galois
group Gal(L/K) corresponding to the infinite APF-Galois subextension L/K
of Kya/K with residue-class degree [k, : k] = d. Then, for 0 < n € Z, we
have the inclusion

(¥)
¢L(p/K <Ga‘1(L/K)1/JL/K°<PL/LO(") B Gal(L/K)¢L/K°<ﬂL/LO(”+1))

< <1KX/NL0/KL8<>

X << S%(L/K))n Ux(r/ )/ Ux (LK) = (USNE(L/K))

Proof. We start with the following general observation. Let 0 < u € R. Let
7 € Gal(L/K), = Gal(L/Ly)#*/%®)_ Then, by the definition of the generalized
arrow ¢(L‘p/)K reformulated as in Remark 2.3,

n+1
Ux(r) )/ Uxr, /K)> -

k(1) = (7R Nro/ic L 650, (077 )
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where 7 |r,= ¢™ |1, for some 0 < m € Z satisfying d | m, because 7 €
Gal(L/K), and 7 |1,= tfo(goL/K(u))(T) € Gal(Lo/K)#r/x®) = (idy,). Thus,

(¥) _ ) (-
¢L§0/K(T) - <1KX/NL0/KLS<’¢L§0/L0 (QO mT)) )
as m = dm’ and thereby W(Ii(mlNLO/KLE; = NpoxLy = 1K></NL0/I(L(>)<, because

!
N,k = mg. Therefore, we have

() = (L oy e 850, (1)

Indeed, =7 = 7 in Gal(L/Lo) because d | m and L C K .

Now, to prove the theorem, we put u = v,/ © ¢r,/1,(n) and u = Y1k ©
¢1,/1o(n +1). Then, for any 7 € Gal(L/K), — Gal(L/K),/, the Fesenko ram-
ification theorem (see [8, Theorem 5.8]) shows that the second coordinate of

gb(L‘p/)K (1) satisfies

¢(L%o(7) € ( ;»%(L/K))n Ux(z/r)/Ux(p/x) = (U§(L/K)>n+l Us(r/r)/Ux(r/K),
because
Gal(L/K), = Gal(L/Lg)?x/x™ = Gal(L/L)?/%™ = Gal(L/Lg)n
and likewise
Gal(L/K), = Gal(L/Lg)?r/x(™) = Gal(L/Ly)?%/t0™+ ) = Gal(L/Lo)pt1,
which completes the proof. ]

Now, let M/K be an infinite Galois subextension of L/K. Thus, by [8,
Lemma 3.3], M is an APF-Galois extension over K. We further assume that
the residue-class degree [k : £k] is equal to d and K C M C K for some
d' | d. Let

$37) i : Gal(M/K) — K> [Nujy e Mg < UZ o [Us (i

be the corresponding generalized arrow defined for the extension M /K. Here,
My=MNK" =K}
Let
KcL,=E,CE,C---CE;,C---CL
be an ascending chain satisfying L = | J,;cz Fi and [E; 1 : E;] < oo for every
0<% eZ. Then B

KCcCM,=E,NnMCE,NMC.-..CENMC.---CM
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is an ascending chain of field extensions satisfying M = |J (E;NM) and also
0<ieZ

[Eit1 N M : E;NM] < oo for every 0 < 4 € Z. Thus, we construct X(M/K)

by the sequence (E; N M )o<jcz and X(M/K) by the sequence (E N M)o<icz.

Observe that E; "M # E; for every 0 < i € Z. Furthermore, the commutative

square

NE.,/E-
~ /B ~><

- ;o
(‘Pdl)lNEi/EimM I1 (©¥)'Ng, /5., oM
0<e< f(L/M) v
x

0<t<F(L/M)
% NE JAM/E;AM

ENM S E,0M

for every pair 0 < 4,4’ € Z satisfying ¢ < 7/, induces the group homomorphism

N = lim T  ©")'Neypear | - X(L/E) — X(M/K)*
0<i€Z \o<e<f(L/M)
(2.17)
defined by
Nijr (( )0<16Z) IT @ 'Nepealeg) ,  (2.18)

0<e<f(L/M) 0<i€Z

for every (ag Jo<icz € X(L/K)*.
Remark 2.8. The group homomorphism
Nipv : X(L/K)* = X(M/K)*
defined by (2.17) and (2.18) does not depend on the choice of the ascending
chain
KcL,=E,CE,C---CE;C---CL
satisfying L = y<;cz Ei and [Ej11 @ E;] < oo for every 0 <i € Z.

Remark 2.9. For 0 <i € Z, let E(E M)~ BN (E; N M)™ be the maximal

unramified extension of E; N M 1ns1de E;. To simplify the notation, we put
Eio=E;N(E;N M)"’" Then the Galois group Gal(E;o/E; N M) is cychc of
order f(L/M) = d/ and is generated by ¢? . Thus, for « € E;,

ol (F(L/M)—1)
Ng,/minv (@) :NEi/EiﬂM(O‘)1+w et :

The basic properties of this group homomorphism are listed below.
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() U = (ugsosiez € Uy, 5> then Niynr(U) € Ug )

Proof. Indeed, using the definition of the valuation vg % of X(M/K) and

M/K)

the definition of the valuation vg % of X(L/K), we obtain

L/K)
X(M/K) ( L/m( ) = YX(M/K) (( H ((Pd/)gﬁE‘z/EmM(uﬁl)) )
0<L<f(L/M) 0<ieZ
owp) | = 3 v (") (ug)
0<es 0L f(L/M)
=0,
0<t<f (L) )
because vz ) =vi(ug) for £ =1,---, f(L/M) — 1, and
VSE(L/K)(U) =vi(ug) =0,
because U € Ug X(L/K)" 0

(ii) If U = (ug, )o<ien € UL then A7 5 (U) € US

X(L/K)’ X(M/K)’

Proof. Note that Eo = K and Mg - K. Now, the claim follows from the
observation that

Prk(U) =up € Ur,

and
Prg (Mem@) =TI ")'Neymaonr(ug,)
0<e<H{L/M)
= H (‘Pdl)euf( = Ng,/E.nm(ui) € Ungy-
0<L<f(L/M) ]

(iii) IftU = (UEi)OgiEZ € UX(L/K)a then ./VL/M(U) € UX(M/K)-
Proof. This follows from the definition (2.18) of the homomorphism (2.17),
combined with the fact that

)de'Jr...wd’(f(L/M)—l)

NEi/EimM (UEZ = NEi/EiﬁM (UEl)

for every up, € Ug,; and every 0 <i € Z, by Remark 2.9. O
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~ d’ d'(f-1 ~ d 4 ogpd (f=1)
Observe that Ng, /g, _, (a”‘/’ +otpt (f )> = N/, (a)1+<p +otp

for any o € E; with 1 < i € Z, where f = f(L/M). Thus, we can define a
homomorphism

(@) par + X(L/Lo)* — X(L/Lo)* (2.19)
by the rule
d fogpd (F=1)
{(p) : (a~_> - (oﬁfr‘p ot ) (2.20)
LM Ei)o<iez B 0<icz
for every (aﬁl)0<_ ; € X(L/LO)X. The basic properties of this group homo-
i <ie

morphism are listed below.
(i) (@ rm <U§§(L/L0)) < Ux(1,/10):

Proof. Indeed, the definition of the valuation vg % of X(L/Lg) shows that

L/Lo)

) ( 1o 4o (f(L/M)—1)>
L/M L/Lo) \ Y7,
YEL/10) \ 0<i€Z

1
= <u§( ol o’ (F(L/M)= 1)> _ Z ve (((Pd/)Z(uf())

0<e<f(L/M)

Il

X

)
IS

!

|
o

because vz <(g0dl)z(u~)) =vi(up) for £ =1,---, f(L/M) — 1, and
ug) =0,

because U € U X(L/K)"

. o o
() ez (UX(L/L())) < Vo
Proof. Note that Lo = K. Now, the claim follows from the observation that
PrI?(U) =ug S ULO

and
1 ' (f(L/M)=1)
Pry; ({ohryar (U)) = w44
= H (Sodl)euf( = NEO/EOmM(Uf() € Uny C U,
0<U<f(L/M)
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(ii)) (@) /0 (Uxz/L0)) € Ux(L/Lo)-
Proof. Clearly, for U = (ug; )o<iez € Ux(r/1,) We have
d' g pd (F(L/M)=1)
()pm (U) = (“H@ L Jo<iez € Ux(1,/1,)
because ug, € Ug, for every 0 <1 € Z. O
Thus, there exists a group homomorphism
N o (@) X(L/K) — X(M/K)* (2.21)
satisfying
(i) Njaro (‘P>L/M (UX(L/K)> C Uz X(M/K)?
.e Y <> <>
(11) NL/M o <(10>L/M (USE(L/K)) U (M/K)

(iii) /\~/L/M o @)/ (Ux(r/r)) S Usx(m/i)-
Now, we introduce the Coleman norm map

Coleman .
NL/OZ\; e U;NE(L/K)/UX(L/K) - U?%(M/K)/UX(M/K) (2.22)
from L to M by
NCOleman( ) =Npjao (@ Vo (U)-Us(aryx (2.23)

for every U € U , where, as before, U denotes the coset UUx(r k) in

X(L/K)
UX(L/K)/UX(L/K)
Lemma 2.10. For an infinite Galois subextension M /K of L/K such that

the residue-class degree [knr : kK] is equal to d' and K C M C K o for some
d' | d, the square

L)
L/Lg

Gal(L/Lo) ——= U3 11,/ Ux(/10) (2.24)

A/Coleman
resm l o) LN’ L/M
©
¢

Ga].(M/MO) M/MO UO(M/M /UX M/Mo)
where the right-vertical arrow is the Coleman norm map NCOleman from L to
M defined by (2.22) and (2.23), is commutative.

Proof. For o € Gal(L/Ly), we have resy;(0) = o |y € Gal(M /M), because
LinM =LNK"NM=MnNK" = M,. Now, for any o € Gal(L/Ly), in

d
accordance with the definition, we can write gb(Lg)/ L)O(o) = Uy-Ux(1,/14), Where
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-1
Us € US%(L /Lo) 4;L/Lo

commutativity of the square, it suffices to check that

_d
satisfies the equation Uy, ¥ = H; . Thus, to prove the

= d' 4oy pd (F(E/M)—1)
NL/M(U(HW e )EUa\M (mod UX(M/MO)),

o . 1o olu—1 .
where Uy, € (M Vo) satisfies UU‘M = H@d’;M/MO‘ By Remark 2.8, without

loss of generality we can fix a basic sequence (cf. [8])
Ly=FEyCcE,C---CE;C---CL,

where
(i) L= Uogiez Ei;
(ii) E;/Ly is a Galois extension for every 0 < i € Z;
(iii) Ej+1/E; is cyclic of prime degree [E;y; : E;] = p = char(kr,) for each
1<ic7;

(iv) E1/Ey is cyclic of degree relatively prime to p.
Thus, each extension F;/Lg is finite and Galois for 0 < i € Z. Now, we note
that

~ d A (L MY=1) 1 d ~ _d ~ _d
Ny (Lo +te NV = N (U)4" = Ny (U9,

. 1—pd - . . .
Since U, ¥ = H;d;lL/LO’ setting U, = (uEi)OSiEZ’ for 0 <1 € Z we obtain

2

!
ﬁL/M(U;+<pdl+---+<pd/(f(L/M)_1))kwd

! !
Y o—1 Y o—1\14+p% 4.4 (f(L/M)—1)
= Ni/m (H‘pd?L/L‘))i = Ng,/mom (7, )

- o—1\ __ _olu—1
= NEZ-/EmM(WEi ) = TENM

It follows Nthat Nijar 0 (@) pyur (U5)'7¢" = 7 ‘;,{ ;/MO, which yields the con-
gruence N s o <<,0>L/M (Us) = Uy, (mod Ux(ar/ng))- This completes the

proof. O

We arrive at the following theorem.

Theorem 2.11. For an infinite Galois subextension M /K of L/K such that
the residue-class degree [kpr @ kx| is equal to d and K C M C K@d/ for some
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d' | d, the following square is commutative:

¢(‘P)
Gal(L/K) — K* [Nyo Ly x Ug o [Us(n )

resMJ( l(egg;FMo ./\/'Lc/oj{j}man)
¢(¥’)

Gal(M/K) =25 K™ [Nagy e Mg U vy ey Uy ),

where the right vertical arrow

( CFT NColeman)

€Lo/Mo”VL/M

KX/NLO/KLOX X ng(L/K)/UX(L/K) KX/NMO/KM[)X
x US%(M/K)/UX(M/K)

is defined by the rule
(R NERT™) + (@,T) = (€50, @), NEpism () )

for every (a,U) € K* [Ny, /g L§ ¥ U /UX (LK)~ Here,

X(L/K)
egg/T% K*[Npo kL — K™ [Nagy i My

is the natural inclusion defined via the existence theorem of the local class field
theory.

Proof. By the isomorphism defined by (2.1) and (2 2), for any o € Gal(L/K)
there exists a unique 0 < m € Z such that o |,= ¢™ and ¢~ "0 € Gal(L/Ly).
By the definition, we have

d
k() = (TRNL kI 0 (977 0))
Thus,
d
(egf/TMoaNCdeman) (WIT?NLO/KLOX@(L(?L)O(SO_mU))
d
= (e (TR N 1 L) N (847 (97" )))
d/
= (W?NMO/KMon¢5\§/A)40(90_mU |M)>
by Lemma 2.10. The existence theorem of the local class field theory yields

GSE/TMO (TRNLo L) = TN e My = 7% Nagy i Mg,
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where 0 < m/ € Z is a unique integer satisfying (o |ar) |ay= 0 |, = @™ and

@™ (0 |ar) € Gal(M/My). Hence,
(55 M) (B (0)) = (w?’NMO M B (™ \M>)
= (R Mot M 07, (7 0 10 ) = 5 (o)
by Remark 2.2, part (i), which completes the proof. O
Now, let F'//K be a finite subextension of L/K. Thus, L/F is an infinite
APF-Galois extension (see Lemma 3.3 in [8]). We fix a Lubin-Tate splitting

op over F and assume that the residue-class degree [k, : kF]| is equal to d’ for
some d' | d, and that there exists a chain of field extensions

FCLCF((PF)d/'

Thus, we have the generalized arrow
F X
G715 < Gal(L/F) — F* N, vy, L™ X U2 o [Usa gy

corresponding to the extension L/F. Here, as usual, L(()F) is defined by LE)F) =
LN F" = F}". Observe the following diagram of field extensions:

L

totally ramy F) Fl<
L(K) :K]<oo %K

Thus, L/ LSF) and L/ LSK) are infinite totally ramified AP F-Galois extensions,
by Lemma 3.3 in [8], and we have L(()F) CcLC (LE)F)> , and LE)K) CcLC

YF
(LE)K))%
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Remark 2.12. Note that LE)F) is compatible with (LE)K), ¢, u)) in the sense
0

, FLO) L
of [10, pp. 89], where ¢, ) = ¢ Thus, P = oh = sDL((K% MR =
0

because LSF)/ LSK) is totally ramified.
For the extension L/ LBF), we fix an ascending chain
) =F,crc...cFc- cL

satisfying L = Uogiez F; and [F;41 : F;] < oo for every 0 < i € Z. Following
[8] we introduce a homomorphism

Apyrc: X(L/L) = (L L) (2.25)
by
NF /F, NF /F
AF/K:(aFo 1 anl 2/F1 )
N (F) 1 (K) N N
~ Ly /L / /
= (N 00 (@m,) ———"— ap, = ap, —== ) (2.20)

for each (ap;)g<;cy € X(L/ L(()F))X. This homomorphism induces a group ho-
momorphism

Aok Uiy Vs ) = Yawngor Ve ngey - 220
defined by
for every U € U;;(L/Lgp)), where the symbol U denotes the coset U.UX(L/L(()F))

RN .
in UX(L/L(()F))/UX(L/LSF)) (see [8] for the details).

Lemma 2.13. Let F/K be a finite subextension of L/K. Fix a Lubin—Tate
splitting pp over F. Assume that the residue-class degree [kr, : k] is equal to

d and F C L C Fypyar for some d' | d. Then the square

(%)
AN I /U
Gal(L/LO )—> g(L/LgF)) X(L/Lgp)) (2.29)

inci d)(@(}z() J//\F/K
(K)

L/L
Gal(L/LE)K)) — U%(L/L(()K))/UX(L/L(()K))’
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where the right vertical arrow
<
Akt U (L/L(F) ssrs®y = Vg n00y Uxiny60)
is defined by (2.27) and (2.28), is commutative.
Proof. Look at the proof of Theorem 5.12 in [8]. O
We arrive at the following theorem.

Theorem 2.14. Let F/K be a finite subextension of L/K. Fiz a Lubin—Tate
splitting pp over F. Assume that the residue-class degree [kr, : kp| is equal
tod and F C L C F,pya for some d | d. Then the following square is
commutative:

(er)
L/F

Gal(L/F) =5 F* N sy, I % US 1y Usiasm) (2.30)

inc. l(NF/K)\F/K)
(¢xr)

L/K

K X
Gal(L/K)%K / (K)/KLE) ) XU}%(L/K)/UX(L/K)’
where the right vertical arrow
)X
(Np/r> ARyKc) - FX/NL(()M/FLE) 7 U 1y Ux(r/p)
K X
— KX/NL(()K)/KL(() ) X U%(L/K)/UX(L/K)
1s defined by
F/K>AF/K) a,U) — F/K\Q), AR/ K U
(Nr/k, Ap/i) = (@ U) = (N (a), Apyk (U)
— X
for every (a,U) € FX/NLSF)/FLBF) X U%(L/F)/UX(L/F)‘
Proof. Let o € Gal(L/F). There exists 0 < m € Z such that o ]L(F)z op
0

and ¢, "0 € Gal(L/LgF)). Now,
8700) = (2N 2 6K ()

and

(Ve e M) @5 @) = (w8 Ny 65 6 (001 )
by the norm-compatibility of primes in the fixed Lubin-Tate labeling and by
Lemma 2.13. There exists 0 < m' € Z such that o |, 4= @ and gol_(mla €
0
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Gal(L/Li)). By part (i) of Remark 2.2, it follows that o o= ¢ and

-m . __ —m/ N N - TN L(F)X N L(K)X _

(,DF ag = (IDK ag. ow, F/K : 7TF L(()F)/F 0 g 7TK (K)/K 0
. N L) KLEK) : by the Abelian local class field theory. Thus,

0

(Ve e M) @5 ) = (N 16K (om0

! (¢4
= <7r17? 'NL(K)/K aﬁbL/IZ(K)(‘PK 0')> ¢L/K( )

which completes the proof. ]

Let L/K be any APF-Galois subextension of K i/K, where the residue-
class degree is d. If L/K is assumed to be a finite extension, then the K-
coordinate of the generalized arrow qS(L“;)K : Gal(L/K) — K*/Npg /Ly x
U}%(L/K)/UX(L/K) is the Iwasawa-Neukirch map ¢z, /x of L/K (for the details
on the ITwasawa-Neukirch map ¢z, of the Galois extension L/K, see [8, §1]).
More precisely, we have the following statement.

Proposition 2.15. Define a homomorphism
p: KX/NLO/KLg X ng(L/K)/UX(L/K) — KX/NL/KL>< (2.31)
by
p: (i, (ug)) = g Ny (ug,) mod Np g L™ (2.32)
for every (n2, (uz)) € K*/Npy/k Ly % U}%(L/K)/UX(L/K)' Then the composite

map

ﬂ°¢(L¢/)K =LlL/K

¢ )
Ga‘l(L/K) i I(X/]VLO/K:LS< X U%(L/K)/UX(L/K) L) KX/NL/K'LX
(2.33)
is the Twasawa—Neukirch map i1k : Gal(L/K) — K* /Ny /x L™ of L/K.

Proof. We follow §1 in [8] to briefly recall the construction of the Iwasawa—
Neukirch map

vk Gal(L/K) — K* [Ny g L™
for the Galois extension L/K. For every o € Gal(L/K), we choose o* €
Gal(L""/K) in such a way that

(i) o* |r=0; and
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(ii) o™ |gnr= " for some 0 < n € Z.
Let Y« be the fixed field (L") of o* € Gal(L™/K) in L™. Tt is well
known that [X,« : K] < oo. Now, the map ¢7,/x : Gal(L/K) — K* /Ny g L*
is defined by v/x(0) = Nx_./k(7s, ) mod Np,gL*, for o € Gal(L/K),
where 7y, denotes any prime element of ¥,+. Thus, for a finite APF-Galois
extension L/K satisfying [k, : k] = d and K C L C K, it suffices to prove
that, for 0 € Gal(L/K),

,00¢(L¥;)K(0) =11k (0) = Nx_./k (s, .) mod Ny gL*,

where 75 _, denotes any prime element of ¥,«. For 0 € Gal(L/K), there exists
0 <m € Z such that o |r,= ¢ and 7 = ¢~™"0 € Gal(L/Lg). Thus, 0 = ¢™T.
Case 1: m > 0. In this case, it suffices to prove that

d
T Nro K (Przo(éb(LiL)o(@*mU))) = Ny_./k(7s,.) mod Ny gL*,

where 7y, denotes any prime element of 3J,+. To prove this relation, we choose
o* € Gal(L""/K) such that

(i) o™ [L= 03

(11) o* |Knr: (pm.
Indeed, let o* = @™ |pnr 7%, where 7 € Gal(L™ /Lg) is defined uniquely by
the conditions 7* |,= 7 and 7 | gnr= idgnr, because L™ = LK™ . Note that,
for ¥ = 3,+, ¥y = XN K" is a finite extension of degree [¥¢ : K| = m over
K, because Xy coincides with (K™ )%", the fixed field of ™ € Gal(K™ /K)
in K™ Since L is fixed by ¢%, T = L N K, is an unramified extension of
degree d. Thus, the prime element 7r is a prime element of L and of L™".
Now, choose a prime element 7y, of . It is well known that X" = L"" (see
§2 in Chapter 4 of [4]). Thus, 7y is a prime element of L™". So, there exists a
unit v € L™ C L such that sy = wrv. Note that ﬂ'g_l
by o*. Thus, (m7v)? ~! = 1 and we get the relations

= 1 because ¥ is fixed
W?ﬂfl = !0 =TT = T ()T
Recall that (by Proposition 1.8 in Chapter IV of [4] or by Subsection 1.1 in

[10]), Uz is multiplicatively (1 — ¢™)-divisible. So, there exists w € U; such
that w!'=¢" = v. Hence,

Tr;—l — (wlfT*UT*)lf(pm’
because ¢"'7* = 7*¢0™. Now, we choose z € U; in the following way: z =
(w' =" 7" )IHe ™ Observe that this z € U; satisfies 2! % = m k.
Clearly,

~ ~ m—1
Npj(z) = Npjg(v)Hetotem
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After these preliminary observations, we see that

NE/K(WE) = NEO/K o NE/EO(WE)

~ cepm—1
=NL/K(7TE)1+W+ +

= J\NfL/K(7TTU)1+(’+"'+(’m_1

~ m—1
— ﬂ,lr?NL/K(U)1+<p+ +¢

= 7T?ZVL/K('Z)’

because 71 belongs to the fixed Lubin—Tate labeling. Thus, the image of o
under the Twasawa—Neukirch map ¢y 1s

v (o) = W}@NL/K(Z) mod Ny, g L.

Now, let y € U, be such that

“Mmo—1 o—1

vt = T =TT

Yy
Note that T'= L N K,,. Then, setting z = yltet-+0""" ¢ U7 we have

_ o _
2170 = gylmy =7 '
['hus,

NL/K(y) = ZVL/K(y)1+£p+---+(pd—1 _

which shows that
vk (0) = W?NL/K(Z) mod Ny, /i L™

d
=7 Nry /K PTZO(QS(L(?L)O(SfmU)))
=pPo ¢(L¢;)K(O'),

completing the proof.

Case 2: m = 0. In this case, 0 € Gal(L/Lg). Consider %o € Gal(L" /K).
Then, by Case 1, we have

vy i (0°0) = p o ) (¢%o),

where v/, (p%0) = t1,/k (o). Theorem 2.4 implies the formulas

d
¢%P/)K(g0do') = ¢(L(p/)K(Q0d)¢(L§0/)K (o')@d = (W?(NLO/KLE;’Qb%p/L)O (U)) s
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where the last identity follows from the fact that K C L C K 4. Thus,

d
po ¢(L‘p/)K(g) =po ¢(L<P/)K((pdg) = W%NLO/K (Prio(¢(L";L)0(a))) mod Ny, xL*,
which proves the relation

11k (0) = po §) (o).
The proposition is proved. O
()

Now we generalize the definition of the extended Hazewinkel map H;"/
(L/K /YL/K — Gal(L/K) of Fesenko (cf. [1, 2, 3] and [8]), initially de-
fined for totally ramified AP F-Galois subextensions L/ K of K, /K, to infinite

APF-Galois subextensions L/K of K a/K, where [, : kx| = d.
For this, first we assume that the local field K satisfies the condition

pp(K5P) = {a € K% . o? =1} C K, (2.34)

where p = char(kx). For the details on the assumption (2.34) on K, we refer
the reader to [1, 2, 3].

Let L/K be an infinite APF-Galois extension with residue-class degree
(k1 @ kx] = d and with K C L C Kga. As usual, let Ly = LN K". We
introduce the generalized arrow

H) : K* /Ny kL x U3 200y Yismo — Gal(L/K) (2.35)
for the extension L/K by
d
H) (70N kL UYy,) = @™ [ HY) (UY7)1,) (2.36)
for every m € Z and every U € U (1KY where Hg‘/?dL)o : U%(L/K)/YL/LO —

Gal(L/Ly) is the extended Hazewinkel map of Fesenko for the extension L/Ly.
For the definition and basic properties of the group Y7/, we refer the reader
to [3] and [8].

The following lemma is clear.

Lemma 2.16. Suppose that the local field K satisfies condition (2.34). Let
L/K be an infinite APF-Galois subextension of K ,i/K, where d = [kr, : kK]
Then the generalized arrow

H® .

L/K K /NLO/KLX X U

X(L/K) /YL/LO — Gal(L/K) (2.37)

for the extension L/K is a bijection.
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Proof. The proof follows from the isomorphism
Gal(L/K) ~ Gal(Ly/K) x Gal(L/Lyg)
combined with the bijectivity of

d
ngL)o 200y Yoo — Gal(L/Lo)

(cf. Lemma 5.22 of [8]) and the Abelian local class field theory for the extension
Lo/K. O

Now, consider the composition of arrows

(w)

ér
Ga‘l(L/K) S KX /Ny kLg% U3 X(L/K) /UX (L/K) (2.38)
..(w J/(ldKX/NLO/KLE; €L/ L)
By

K~ /]\[Lo/KLE)< X U%(L/K)/YL/LM

where cy /. U}%(L/K)/UX(L/K) — ng(L/K)/YL/Lo is the canonical map defined

via the inclusion Ux(r,/k) € Y7/1,- Recall that (see [8, (5.35)]) the composition
d d

c1/1a08) 0, = 20 Gal(L/Lo) = US| o

map for the extension L/Ly. Now, let o € Gal(L/K). Let 0 < m € Z be such

that o |p,= ¢™ |, and ¢ ™o € Gal(L/Lg). Then, in accordance with the
definition,

/Y11, is the Fesenko reciprocity

d —m
H(L/)K OQE/)K( ) = H(L(?)K (W?'NL()/KLE;’CL/LO [¢] ¢(L¢;20 ((p 0'))
o? —m
_H(L/)K (”K Nio/xLg (I>(L/2 (¢ U))
— " @) (") (,—m
=™ |L HL%/)LO (@L(?Lo(gp O'))
=" | (¢7"0)
=0
by [8, Lemma 5.23]. For 0 <m € Z and U € UO(L/K) let

(W?.NLO/KL(;(,U.YL/LO) S KX/NLO/KL(;( X U%(L/K)/YL/LO
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Now, again by definition,

d
Qgé;)f( OH(L(?)K ((ﬂ-K NLO/KLO 7UYL/L0)) Qg‘?]{ ((pm |L HE?/?L)O(UYL/L())>

ey ) 45 (4 0 B0 0)
. d d
= (g v, enzsn/ea) (FRNLo i LS 6 () (UYi,))
_ (%) @)
= (T"K NLO/KL (I>L/L0( L/LO(UYL/LO))

= (TFK-NLO/KLO ,U'YL/LO) )

by [8, Lemma 5.23]. These computations yield

H) 08 = idar/x) (2.39)
and

%) oH'Y _—ig

o Hi e = (2.40)

KX /Npy/k Ly XU§(L/1<)/YL/LO'

Note that there is a natural continuous action of Gal(L/K) on the topolog-
ical group K* /NLO/KLX X U /K /YL/LO, defined by the Abelian local class

field theory on the first component and by formula (5.7) and Lemma 5.20 in
[8] on the second component:

@,U)° = (a@’",ﬁ“"*m”) — (a, U“’fm”) : (2.41)

for every o € Gal(L/K), where o |1,= ¢"™ for some 0 < m € Z and for every
a € K* with @ = a. NLO/KL and U € UO(L/K) with U = UYy 1, We shall

always view K* /Ny, /x Lg * UX(L/K)/YL/LO as a topological Gal(L/K)-module
in this paper.

So, we arrive at the following theorem, which follows from Theorem 2.4,
Lemma 2.16, and relations (2.39) and (2.40) combined with the fact that
Ux(1/K) is a topological Gal(L/Lg)-submodule of Y7 7.

Theorem 2.17. Suppose that the local field K satisfies condition (2.34). Let
L/K be an infinite APF-Galois subextension of K ,i/K, where d = [k1, : KK].
The mapping

®\” />K Gal(L/K) — K* NpoyicLi x Uy e/ Yigrg

defined for the extension L/K is a bijection with the inverse

H(L/)K K™ Nro/rLg % U /YL/L0 — Gal(L/K).

X(L/K)
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For every o,7 € Gal(L/K), the cocycle condition

(o) = @) _(0)®¥) ()7 (2.42)

()
o, L/K L/K

L/K
is satisfied.

By Corollary 2.5, Theorem 2.17 has the following consequence.

Corollary 2.18. Let a law of composition * be defined on KX/NLO/KL[T X
ng(L/K)/YL/Lo by the rule

@)+ (5,7V) = @ 0).(5, V) @) (@) (2.43)
for every @ = a.Np,/xLy,b = b.Np, kL € K*/Np,/xLy with a,b € K*
o/ K0 o/ o/
and every U = UYL/LO,V ViYL, € U (L/K) /YL/LO with U,V € UO(L/K)
Then K* /Ny, gLy x US Y71, 15 a topological group under %, and the
o/KE0 2 Tk (n /) T L/ o
(¢)

map QL/K induces an isomorphism of topological groups

3 .

L/K Gal(L/K) —>KX/NL0/KLX X U L/K /YL/L()’ (244)

where the topological group structure on K* /NLO/KLOX XL/K/ /Lo 1S

defined with respect to the binary operation * introduced by (2.43).

Definition 2.19. Let K be a local field satisfying condition (2.34). Let L/K
be an infinite AP F-Galois subextension of K i/K, where d = [k, : k]. The

mapping

8% />K Gal(L/K) — K* [Npo/k L§ * Uy o /Yign,

defined in Theorem 2.17 is called the generalized Fesenko reciprocity map for
the extension LK.

We recall that, for each 0 < ¢ € R, the higher unit groups (U‘>(L/K)>Z of the

field X(L/K) were introduced in (2.16). As in [8, (5.42)], for each 0 < n € Z
we put

o, = Ue " Usn i /U im0 ));  (2.45)
L/to = Cr/to \\Us (1 k) Usw/m)/Usqeyry 0im(dr 7)) 5 :

n
this is a subgroup of (U}ig(L/KQ Y110/ Y1 1, Now, the ramification state-

ment of Theorem 2.7 can be reformulated for the generalized reciprocity map

Q(@)

L/K corresponding to the extension L/K as follows.
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Theorem 2.20 (Ramification theorem). Let K be a local field satisfying con-
dition (2.34). For 0 < u € R, let Gal(L/K),, denote the uth higher ramification
subgroup in the lower numbering of the Galois group Gal(L/K) corresponding
to the infinite APF-Galois subestension L/K of K,i/K with residue-class

degree [k, : Kk equal to d. Then, for 0 <n € Z, we have

()
q)L%;K (Gal(L/K)"pL/KOQOL/LO(n) B Gal(L/K)"pL/KOQDL/LO(n'i'l))

< <1KX/NLO/KL3> X ((ng(L/K))nYL/LO/YL/LO - QZ7L10> :

Proof. In accordance with the general observation made in the first paragarph
of the proof of Theorem 2.7, for 0 < w € R and for 7 € Gal(L/K), =
Gal(L/Lg)#*/*® we have

(v) _ (¢')
¢L/K(T) - <1KX/NL0/KL(>)< ) ¢L/L0(T)) )
where ¢ = . Thus, by the definition,

Q(L(p/)K(T) = <1K></NL0/KL(>)<’CL/L0 © gb(L(p/%O (T))

B (¥")

N <1KX/NL0/KL§’(I>L/L0(T)) '
Now, to prove the theorem, we take u = v /x o ¢r/r,(n) and v’ = ¢ x o
¢1,/5o(n + 1). Then, the ramification theorem (see [8, Theorem 5.27]) shows
that, for any 7 € Gal(L/K), — Gal(L/K),, the second coordinate of 3'?) (1)

L/K
satisfies

<I>(L“}20(T) € < ;%(L/K))nYL/LO/YL/LO — QYL
because
Gal(L/K), = Gal(L/L)?»/*™ = Gal(L/L)?/%™ = Gal(L/Lg)n
and likewise
Gal(L/K), = Gal(L/Lo)¥2/x") = Gal(L/Lg)#*/% ™Y = Gal(L/Lo)n1,
which completes the proof. ]

Let K be a local field satisfying condition (2.34). Let M /K be an infinite
Galois subextension of L/K. Thus, by [8, Lemma 3.3], M is an APF-Galois
extension over K. We further assume that the residue-class degree [kns : Ki]
is equal to d’ and K C M C Kw‘i' for some d' | d. Let

) : Gal(M/K) = K [Nagy i Mg' % US| Yarjnsy
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be the corresponding generalized Fesenko reciprocity map defined for the ex-
tension M /K. Here, as usual, M is defined by My = M N K™ = K. Now,
we fix a basic sequence

Ly=E,CE, C---CEC---CL

for the extension L/Lg. Using the notation of [3] and [8], for each 1 < i € Z
we introduce an element o; in Gal(L/K) such that (o |g,) = Gal(E;/E;_1).
Next, for each 1 < k,4 € Z, we introduce the map

h(L/LO) . oi—t il Uz;hq—l
k H Ey — J Pt Epit )

1<i<k 1<i<k+1
the map

(L/Lo) . o;—1 o;i—1

gk} . H UEIC — H UEIC_,’_I
1<i<k 1<i<k+1
and the map
(L/Lo) | rroi—1 - Ap; /B, -
L U = Ukaymy — Vs

as in [3] and [8]. We fix the sequence
My=E,nMCE NMC---CENMC.---CM

for the extension M /M, and, for each 1 < k € Z, define a homomorphism

h(M/Mo) . U”i|zT4_1 R U”i|zT4_1 /Ua'k+1)\7[_1
k : B gy
EpOM Epa M FranM
1<i<k " 1<i<k+1 =+t kot

that satisfies

NIy L/Lo
11 (0" Ny, Bopinne | © B!
0<e<f(L/M)—1

M/ M, NXy
= h,(C /M) H (¢ )ENEk/EkmM
0<L< f(L/M)—1
and take any map
00, [ vl ot

ExNM

FranM
1<i<k 1<i<k41 !
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that satisfies

Ny L/Lo
H (‘Pd )ENEHI/EHmM o gl(c /o)
0<L<f(L/M)—1

= g "M o 1T (") Neymoenr | »
0<e<f(L/M)—1

again following the same lines of [3] and [8].
Now, for each 1 < € Z, we introduce a map

FMMe) il

—

E:NM (M/K)

fi(M/Mo)(w) _ NL/M <fi(L/Lo)(v)> :

i—1 o 4N _
where v € Ugi is any element satisfying Hogzgf(L/M)—l(‘P )'Ni,/mnm(v) =
ilgr—1 . 1 .
we UTIT Observe that if of € U]%Z_ ! is such that

in i

H (wdl)éﬁEi/EiﬁM(vl) = w,
0<e<f(L/M)—1

then -/\7L/M <f¢(L/LO)(U)) _ AN/L/M <fi(L/LO)(/UI)>'
Indeed, there exists u € ker (HOSZSJC(L/M%1 (@d/)zﬁEi/EmM> such that v’ =

vu. Thus, we need to verify that /\~/L/M <fi(L/L°)(v)> = ,/\~/'L/M (fi(L/L")(vu)).
That is, for each 1 < j € Z, we need to check the relation

[T @"'Npmenr (Pry (1 0))
0<L<f(L/M)—1

= II @' Neymen (Prs, (5 0u))
0<L<f(L/M)—1



148 K. I. IKEDA, E. SERBEST

For j > 4, we have
[T @) Neymen (Pr (175 0))
0<L<f(L/M)—1
— (‘pd/)zﬁEj/EjnM (g](i/lLo) 0--+0 QZ(L/LO)(U)>
0<L<f(L/M)—1

— g](M/M") 0---0 gZ(M/Mo) ( H (‘Pdl)eﬁEz/EﬁM(v))

0<E<F(L/M)—1

— g](]\:[l/MO) O-+-0 gl(M/MO) ( H ((pd/)gj\va /EZOM(UU))

<e<f(L/M)—1
= (¢ NE/ E:NM (L/Lo z(L/LO)(vu)>
0<L<f(L/M)—1
= (") N, rm,or (Pry, (1177 (o)) )

0<L<f(L/M)—1
Thus, the map

MM . o0l
fi UE% = Ukmy/x)

is well defined. Moreover, for j > ¢ we have

M/M, M/M, M/M,
E;nM
Indeed, for w € UUI‘J‘/]’V[ there exists v € Ugfl such that
H (‘Pd/)zﬁEi/EmM(U) = w,
0<e<f(L/M)~1

and

M/M,) Lo

FEMP (w) = Ny ag (£ )
That is, the square
i1 f(L/Lo)
U e — L X(L/K) (2.46)

! ~ ~
Mo<e<sirmy-10" ) Ng,/g;0m J{NL/M
f(M/Mo)

O’i‘“‘fl i "
U2 — Yraym)
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is commutative. Thus,
M/M, ~ L/L,
EjﬁM © fz( / )(w) = PrEjﬁM ONL/M (fl( / )(U))

= H (@d/)zﬁEj/Eij <Pr§j ° fi(L/Lo)(U)>
0<U<f(L/M)—1

_ H (‘Pd/)zﬁEJv/Eij ((g](_E/lLo) 0---0 gZ(L/Lo))(U))

0<e<f(L/M)—1

= (MM o 0 g (MM [T @) 'Neypon@) |,
0<L<f(L/M)—1

Pr

which is the desired relation. _

Now, we modify Lemma 5.28 of [8] and show that the norm map N7,y :
X(L/K)* — X(M/K)* introduced in (2.17) and (2.18) possesses the following
properties.

Lemma 2.21. For the norm map /\~/L/M : X(L/K)* — X(M/K)* introduced
by (2.17) and (2.18), we have

(1) /\~/'L/M (ZL/LO ({Ei,fi(L/Lo)}» C Znmy ({Ei NnM, fi(M/M")}>;
(i) Nzjar o (@) rym (Yiyze) S Yo

Proof. (i) Recall that A7L/M . X(L/K)* — X(M/K)* is a continuous map-

ping. Now, for any choice of z(!) € im( f-(L/ LO)), the continuity of the multi-

2

plicative arrow /\~/L/M : X(L/K)* — X(M/K)* yields

i (T2 ) =TTt

)

where /\N/'L/M(z(i)) € im(fi(M/M"))

(ii) For y € Vg1, since y' %" € Zp1,, it follows that N7 (y' ") €
Zyim, by part (i). Observe that

by the commutative square (2.46).

-~ -~ -~ / ’ -~ l—apd/
Napa(y' =) = N ) =" = (N H07 02000070

Therefore,

< @ 4! (F(L/M)—1)
N (y)tHes e =N o () e (V) € Yarya,

as desired. O
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Part (ii) of Lemma 2.21 shows that the homomorphism J\~/L/M o <‘P>L/M :

X(L/K)* — X(M/K)* induces a group homomorphism, which will again be
called the Coleman norm map from L to M; this homomorphism

Coleman
NL/OA/(; an U}%(L/[{)/YL/LO _)Ufz(M/K)/YM/MO (247)
is defined by the formula
NColeman (_) — -/\7L/M o) <<p>L/M (U) -YM/MO (2.48)

for every U € U<> , where, as usual, U denotes the coset UYr)r, In

X(L/K)
Us vy Yoimo

The following lemma is a refinement of Lemma 2.10.
Lemma 2.22. Let K be a local field satisfying condition (2.34). For an infinite
Galois subextension M /K of L/K such that the residue-class degree [kyr @ KK|
is equal to d and K C M C K(pd/ for some d' | d, the following square is

commutative:
q)(‘P )

L/L
Gal(L/Lo) ——= Uz, )1,)/ Yr/10 (2.49)

resps p J{N g/"}\flman
q)(W )

Ga.l(M/MO) /MO UO(M/MO)/YM/MO’

where the right vertical arrow is the Coleman norm map /\/C"leman from L to
M defined by (2.47) and (2.48).

Proof. It suffices to prove that the square

cr/
U}%(L/K)/UX(L/K) & U}%(L/K)/YL/LO

A/Coleman A/Coleman
| MLM

o M/ ©

is commutative, which is obvious. Then, uniting this square with the square
(2.24), we obtain

¢(¥’ )
Gal(L/K) —— o, UO X(L/K) /UX (L/K) LN UQ(L/K)/YL/K

reSMJ/ Ngojl\/eIlnan J’\?E/o]l\;man
)

Gal(M/K) % US /iy Ut (/1) L0, US ey Yo/
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and the commutativity of the square (2.49) follows. g

Thus, we have the following theorem, which is a refinement of Theorem
2.11.

Theorem 2.23. Let K be a local field satisfying condition (2.34). For an
infinite Galois subextension M /K of L/K such that the residue-class degree
[kar 2 kK] s equal to d' and K C M C K o for some d' | d, the following
square is commutative:

q,(%") ;
Gal(L/K) —L%5 K* /Ny i L % ng(L/K)/YL/LO

I‘eSMJ( o J/( gg’/TMO NE/O]I\ZI‘DB,B)
&\
Gal(M/K) —L5 K* /Ny e Mg* % US sy Yot o

where the right-vertical arrow

CF Coleman
(e VERT™")

KX/NL()/KL(>)< X U}%(L/K)/YL/LO

< U a1y Yot /Mo

KX/NMO/KMOX

is defined by
<eg§‘/T]‘MO,NColeman> . (E, ﬁ) N (eL /MO( ) N[(/J/o]{;man( ))
for every (a,U) € K* /Nio/xLg X% ng(L/K)/YL/Lo' Here
ety t K INLy g Li — K™ [Nagy i My'

is the natural inclusion defined via the existence theorem of the local class field
theory.

Proof. By the isomorphism defined by (2.1) and ( 2), for 0 € Gal(L/K)
there exists a unique 0 < m € Z such that o |1,= ¢™ and "0 € Gal(L/Ly).
Now, by definition,

d
) (0) = (RRNLo/w L5, 0] (6770))
Thus,
(QSE‘/T]QO’NColeman> (WKNLO/KLO ’ (I)(L/L)O( 7m0’)>

d
= (1, (RN e L), NS (047 (577 0)) )

= <7TKNM0/KM0 7@34/1\)40(‘»07"10 |M)>
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by Lemma, 2.22. Note that, by the existence theorem of local class field theory,
we have

F

CFT m X\ _ .M X _ .m X
€Lo/My (WKNLO/KLO ) = T Nag kMg = T Nyg e My

i
™ and

where 0 < m/ € Z is a unique integer satisfying (o ) |my= 0 |my= ¢
o™ (o |ar) € Gal(M/Mp). Hence,

!

~ , d m
(65 SR @47 00) = (=8 Ny 5 245, (0 )

’ d’ —m!
= (B Mot M5 O (7 (0 1) ) = B4l (0)
by Remark 2.2 part (i), which completes the proof. O

Let K be a local field satisfying condition (2.34). Let F'/K be a finite subex-
tension of L/ K. Thus, L/F is an infinite AP F-Galois extension (see [8, Lemma
3.3]), where F satisfies (2.34). Fix a Lubin-Tate splitting ¢ over F' and as-
sume that the residue-class degree [k, : kp] is equal to d’' for some d' | d and
that there exists a chain of field extensions

FCLCF(QDF)d/.

Then we have the generalized Fesenko reciprocity map

(o) | 0
®)w  Gal(L/F) = XNy Ly X Uy /Y o0
corresponding to the extension L/F. Here, as usual, L§ is defined by L{") =

LNF"™ = FJ" (we recall that L(()K) =LNK" =KJ").

Now, we fix a basic sequence
'=g,cE c...cEc--cL

for the extension L/ L(()K). Using the notation of [3] and [8], for each 1 <i € Z
we introduce an element o; in Gal(L/K) such that (o |g,) = Gal(E;/E;_;).
Next, we fix the sequence

=Ll cpil{"c..crll"c...cLLi’ =1

for the extension, L/L(()F), asin [8, (5.55)]. For 1 < i € Z, we introduce elements
o} in Gal(L/F') that satisfy

< 0'; |E‘iL((,F) >= Gal(EiLgF)/Ei,ngF))

as follows :

(i) for i > i, we put o} = oy;
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(ii) for i < i, we put
(o if B\ ¢ BL{",
O, = 4. . F F
I L Ei_ L") = BL{",

where i, is defined as in [8, (5.55)]. Then it is clear that, for each 1 < i € Z,
the elements o} of Gal(L/F) satisfy

<07 |0 >= Gal(E, L\ E;_ L),

and that o = o; for almost all 1. Next, for all 1 < k,7 € Z, we introduce
(L/L(F -1 or—1 of, -1
the map h,, H1<z<k (F) [li<ickn U " /U kil\/(F), the
o Ej1L Eps1 L -
(L/L§ 1 or—1 /LMy
map g, <<k U P = [li<i<k1 U -, and the map f;070 7
Er41Lg
A (F) 1 (F)
o¥—1 E;Ly /L .
UEIL(F) — UX(L/EZ_L(()F)) R Ug(r/r) 3 in [3] and [8]. For each 1 <
it
k € Z, we define a homomorphism
L/L( ) H Ual—l it /ng+1—1
E E
1<i<k 1<i<h1 A
that satisfies
S (L/e§?) _ (/L) 5
NEk+1L(()F)/Ek+1 oy = Iy, ° E LS [ By

and take any map

(L/L5y oi—1 S
gi. o7 H UEk — H UEkH

1<i<k 1<i<k+1
that satisfies
~ (F) (K) ~
(L/Ly °) _ (L/Ly ")
NEk:+1L(()F)/Ek © 9k =9 ° NEkL(()F)/Ek’

again following the same lines of [3] and [8].

: , (L/LG) o1
Now, for each 1 <4 € Z, we introduce the map f; U = Ug X(L/K)

(K) (F)
by fi(L/LO )(w) = AF/K (fi(L/LO )(v)), where v € U/\(L) is any element sat-

E;LY
is such that

isfying ]\NfEiL(()F)/Ei(v) =w € U‘T: !, Note that if v € UE L( |
L/L(()F)) (’Ul)).

L L(F)
NEiLgF)/Ei (’Ul) = w, then AF/K (fz( / )

(v)) = Apyrc (£
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Indeed, there exists u € ker (N . such that v’ = vu. Thus, we need

iL(()F)/Ei)

(F) (F)
to verify that AF/K(fi(L/LO )(v)) = AF/K(fi(L/LO )(vu)). That is, for each

1 < j € Z, we need to check the relation

Prg, (AF/K<f£L/ LE’F”(v))) = Pry, (AF/K<f£L/ Lgp))(vu») . (250)

For j > i, we have

(L/L5") (L/L5")

Pry <AF/K( f; (v))> =Ny 15, <PrE7£g;) (AF/K(fi (v))>>

Y (L/rs")
— EjL(()F)/Ej (Prgjzg) <'f2 0 (’U)>>

~ 7/ /L&)
= oy, (845000

L/ L/Ly) (7
293('7/1 0 )O"‘ng( /Lo )(NEiLf)F)/Ei(U))’

(F) (K)
by the properties of the mappings g,(CL/ L) and g,(CL/ o), Thus, relation (2.50)

follows, because Z\~/'E (P (v) =N (vu). Therefore, the map
Ly '/ E;

EL{"/E;

(L/ILEDY i
i ‘Ugi ' _>U§N§(L/K)

is well defined. Moreover, for j > ¢, we have

1,/ 1,/ 1,3 1,/
Pry o £/ <g]<__/1 0 oo gHIE )) et -

Indeed, for w € U%:'_fl, there exists v € U;%) such that NEZ-LE,F)/EZ- (v) = w,
il
(K) (F)
and fi(L/L0 )(w) = Ap/k (fi(L/LO )(v)). That is, the square
/e
oy —1 fl 0 3
UEiL(()F) — Uz(yr) (2.51)
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is commutative. Thus,
/Ly /L")
PI‘Ej o -fz( / 0 )(’U)) = PI‘EJ OAF/K (fz( / 0 )(’U)>

N (/L)
= EjL(()F)/Ej <PrEjL(()F) o fz (’U)

_ /(P /(P
=Ny 10, <(g§'/1 0 ) oo gttt ))(U)>

L L(K) L L(K) ~
= <g§/1 0 )o ng( / 0 )> (NEiL(()F)/Ei(U)>,

(F) (K)
by the properties of the mappings g,(cL/ L) and g,(CL/ Lo ), as claimed.

Now, we modify Lemma 5.30 of [8] and show that the homomorphism A :
§A§(L/L(()F))X — SE(L/L(()K))X introduced in (2.25) and (2.26) possesses the
following properties.

Lemma 2.24. For the continuous homomorphism Ap g : §~§(L/L8F))X —
§~§(L/L(()K))>< introduced by (2.25) and (2.26) we have

. L/ L/
(i) AF/K(ZL/L(()F)({KiFafi( Feoy) ¢ 21150 ({5, 10,
(ii) AF/K(YL/L(()F)) - YL/L(K)'

0

. (F)
Proof. (i) For any choice of z() e Zi(L/ Lo ), the continuity of the multiplica-

tive arrow Ap)g §~§(L/L(()F))X — §V§(L/LE)K))X yields
Ap/k <H Zm) = HAF/K(Z(i))a

. (K)
where AF/K(z(Z)) e z\F/ )

; by the commutative square (2.51).

’ (F)
(ii) Let y € ¥, ). Then Y=t € Z o ({K:F, £ ). Thus,

/Ly
- 1—pd! (L/5") :
Ap/g(y =97) = Ap/g(y) —%F € ZL/L(()K) ({Ki f; }) by part (i). Now
the result follows, because go%’ = gpﬁ( by Remark 2.12. U

Thus, the homomorphism Ap/k : §§(L/L(()F))X — §~§(L/LE)K))X defined by
(2.26) induces a group homomorphism

. < <o
A/ U Yo = Ungoy/Yurgo (2:52)
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defined by

for every U € U2

(7)., Where, as usual, U denotes the coset U.Y in
X(L/Ly ") L

/L")

&
U%“«L/Lé”)/ Yo
Let

(or) . ()
@)+ Gal(L/F) = F* [Ny p Lo < U omy [ e

be the corresponding generalized Fesenko reciprocity map defined for the ex-

tension L/F, where Y =Y, , o ({KF, £ L(()F))})
9 L/L(()F) - L/L(()F) 59 J g .

The following lemma, is a refinement of Lemma 2.13.

Lemma 2.25. Let K be a local field satisfying condition (2.34). Let F/K be a
finite subextension of L/ K. Fiz a Lubin—Tate splitting op over F' and assume
that the residue-class degree [kr, : kp) is equal to d’ and F C L C F(«/)F)‘i' for
some d | d. Then the square

(I)(v‘f()
(), ) e /Y
Gal(L/Ly ") — "k /1! " L/Lf” (2.54)
inc.l (b(v(}i() J(/\F/K

£/L{©

Gal(L/LY")) —> U?E(L/LSK))/ Yigor

where the right vertical arrow Ap g U;;(L/L(()F))/YL/L(()F) — U;;(L/L(()K))/YL/L(()K)

is defined by (2.52) and (2.53), is commutative.

Proof. It suffices to prove that the square

i n. <
USE(L/LE,F))/UX(L/LSF)) e UX(L/L(()“)/YL/LSF)

)‘F/KJ/ \LAF/K

O n. <
UX(L/LE)K))/ U150y 22 UX(L/LE)K))/ Yo
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is commutative, which is obvious. Then, uniting this square with the square
(2.29), we obtain
q)(WK)

Gal(L/L{") - UO(L/L(F) IVx(unioy === U L/L(F) RIS

inc.i cp(“olf() l)\L/F l)\L/F
(K

Ga,l(L/L(()K)) — X(L/L(()K))/U (L/L(K)) —) L/L(R) / /L(K)a
and the commutativity of the square (2.54) follows. O

Thus, we have the following theorem, which is a refinement of Theorem
2.14.

Theorem 2.26. Let K be a local field satisfying condition (2.34). Let F//K be
a finite subextension of L/ K. Fiz a Lubin—Tate splitting pp over F' and assume
that the residue-class degree [kr, : kp) is equal to d' and F C L C F(tpp)d' for

some d' | d. Then the following square is commutative:

(eFr)
Gal(L/F) P, px IN m, LS % US /Y (2.55)
L /0 x(r/Fy T L/g? '
inc.J l(NF/K’/\F/K)
®L% (1) %
Gal(L/K) —= K> N, g0 Lo " xUg /Y 00,

where the right vertical arrow

F X
(Np/, A\rjK) FX/NL(()F)/FL(() " x U wymy/ Y o6

K)X
—>K></NL(()K)/KL8 NS I L/K/ 1/L0
is defined by (Np/g, Ap/) = (@ U) = (Npjg(a), \pyx (O)) for every (a,U) €
(F)*
FX/NL(()F)/FLO X UO(L/F)/YL/L(()F)-

Proof. Let 0 € Gal(L/F). There exists 0 < m € Z such that o | = ¢F
0
and p,"o € Gal(L/LgF)). We have

m )X = (0%) —m
o7 (0)=(np- N, o L @ (o 2)
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and
K)* d _
(i M) @2 (0) = (TN o L6 @7 (0570)
by the norm-compatibility of primes in the fixed Lubin-Tate labeling and by
Lemma 2.25. Now, there exists 0 < m’ € Z such that o |L(K): gp%/ and
0

gol}m/a € Gal(L/LgK)). By part (ii) of Remark 2.2, it follows that ¢ |, )=
0
go’l’}/ and ¢p"o = gol_(m/o. By the Abelian local class field theory, Np/k :

TN, ) WL o TN o IS = 2N e, L Thas,

Ly /P /K /K

x d o
(Ve M) @70)) = (g0 L6 875 )
0 /Ly

m’ K)X d e
= (8 g0 B (0 ) ) = 878,
which completes the proof. O

() _ (q,(w)

Finally, the inverse H k= (2L K)*1 of the generalized Fesenko reciprocity
(9)

map @' /K defined for the extension L/K is a generalization of the Hazewinkel
map for infinite APF-Galois subextensions L/K of K i/K satisfying [y, :

kx| = d and under the assumption that the local field K satisfies condition
(2.34). More precisely, the following is true.

Proposition 2.27. The square

()
HLW/K

K> [Ny kLg X U;”z(L/K)/YL/Lo —— Gal(L/K)

(idKX/NLO/KLg ’PTI?)J( l mod Gal(L/K)'
h
K> [NpoyicLi % Uro/NijioUs —= Gal(L/K)™

is commutative, where hy, g KX/NLO/KLS< X ULy/Np UL — Gal(L/K)®
is the Hazewinkel map of L/K.
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