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Abstract. The possibility has been explored to control the photonic Tamm resonances (TRs) in
the one-dimensional microwave photonic crystal (MPC) with the dielectric filling by changing the
thickness of the MPC’s outer layer adjacent to the heavily doped layer of the semiconductor GaAs
structure. The controlled photonic TRs have been used to measure the conductivity of the heavily
doped semiconductor layer. It has been shown that depending on the conductivity of the layer the
specific tuning of the TR frequency is necessary in order to achieve a high sensitivity of the TR to the
change of the conductivity. The possibility of observing the plasma resonance in the infrared range
has additionally allowed to determine the concentration and mobility of free charge carriers in the
heavily doped layer of the GaAs structure.
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Аннотация. Исследована возможность управления фотонными таммовскими резонансами в одномерном СВЧ фотонном кристалле
с диэлектрическим заполнением спомощьюизменения толщиныслояфотонного кристалла, граничащего с сильнолегированнымслоем
полупроводниковой GaAs структуры. Управляемые фотонные таммовские резонансы в микроволновом диапазоне частот использо-
ваны для измерения удельной электропроводности сильнолегированных полупроводниковых слоёв. Показано, что для достижения
высокой чувствительности таммовского резонанса к изменению удельной электропроводности сильнолегированного слоя, необходима
определенная перестройка частоты таммовского резонанса, величина которой определяется величиной удельной электропроводности
сильнолегированного слоя. Возможность наблюдения плазменного резонанса в инфракрасном диапазоне позволило определить кон-
центрацию и подвижность свободных носителей заряда в сильнолегированном слое полупроводниковой GaAs структуры.
Ключевые слова: измерение проводимости, сильно легированный полупроводник, СВЧ фотонные кристаллы, плазменный резонанс,
таммовские резонансы, Х-диапазон
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Introduction

One of the directions in the development of mi-
crowave technology is the creation of microwave
components based on periodic structures called
Bragg microwave structures or microwave photonic
crystals (MPC) [1–5]. The appearance of resonances
(defect modes) inMPC due to the introduction of ele-
ments that disturb the periodicity of the MPC makes
it possible to create measurement techniques of the
material parameters and structures in the microwave
range.

The materials and samples under test, such as
dielectrics, polar liquids, composites, and structures
with semiconductor layers, are generally inserted in-
side the MPC, most commonly in its central layer [1,
6–9].

However, this method has a number of limita-
tions associated with the almost complete disappear-
ance of the defect mode in theMPC’s band gap when
the samples characterized by high losses are intro-
duced into the MPC. The disappearance of the defect
mode is observed, for example, at the measurement
of the samples containing thin highly conducting
nanolayers.

Thin highly conducting layers are used in a wide
range of microwave technology applications. Mi-
crowave matched loads, bolometric power meters of
the millimeter and sub-terahertz ranges, electromag-
netic shields, and elements of integrated microwave
circuits are created on their basis [10–16]. Highly
conducting films, created using various conducting
ink printing technologies, are essential elements of

flexible electronics and photonics with large areas
[17–26].

The studies of thin conducting layers using
transmission line methods [27–30], as a rule, are
based on the transmission/reflection coefficient mea-
surement. The range of measured thicknesses and
conductivities is determined by the dynamical range
of the measured transmission/reflection coefficients
of the used measuring system. For implementing
resonator measurement methods [27, 31, 32], which
provide a wider range of measured thicknesses and
conductivities, it becomes necessary to create a pre-
cision high-Q resonator and carry out its preliminary
calibration without a sample.

One of the approaches providing measurements
of highly conducting layers in the microwave range
is the use of surface states in MPCs. The approach
was successfully applied to measure the conductivity
of metal nanolayers [33]. However, the measure-
ment ranges of the thickness and conductivity are
limited due to the fact that the pronounced Tamm res-
onance (TR) is observed only at specific values of the
thickness and conductivity of the metal nanolayer.

In this work, we have developed an approach
aimed at solving the problem of diagnostics of
conducting layers with high and extremely high
conductivity, which are used in various fields of mi-
crowave technology. This is especially important for
diagnostics of conducting graphene structures with
thicknesses of several nanometers as well as heavily
doped semiconductor layers with thicknesses from
tens of nanometers to several micrometers.
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To achieve this goal, it is proposed to tune the
Tamm resonance’s frequency in the MPC depending
on the thickness and conductivity of the conducting
layers under test.

The possibility to tune the frequency and ampli-
tude of the TR in the optical range was demonstrated
in a number of works [34–39].

Note, that in contrast to the optical range, in
which the tuning of the TR can be carried out both
by a change of the conductivity and thickness of the
conducting layer, and by a change of the parameters
of the photonic crystal, in the MPC, a change of the
conductivity and thickness of the conducting layer
does not change the frequency of the TR, but only its
amplitude.

In this regard, in order to observe a pronounced
TR at different values of the conductivity and thick-
ness of the conducting layer, we have implemented a
frequency control procedure of the TR in theMPC by
changing the thickness of the outer layer of the
MPC adjacent to the conducting layer.

1. Computer simulation of controlling
the TR characteristics

The MPC assembled from Al2O3 ceramic (the
odd positions, ε = 9.6, the thickness – 0.5 mm) and
teflon (the even positions, ε = 2.0, the thickness –
18mm) layers has been tested in the range 7–13 GHz.
The MPC consisted of 11 layers; the thickness of the
one of the outer layers is varied.

The semiconductor structure under test con-
sisted of three gallium arsenide GaAs layers. The
semiconductor structure was placed behind the
MPC in such a way that the highly doped epitaxial
n+-layer was directly adjacent to its outer dielec-
tric layer. In this case, two configurations were
considered: the thickness of the MPC’s outer layer
adjacent to the n+-layer of the GaAs structure dL was
0.5 mm (configuration 1 in Fig. 1), the thickness of
the MPC’s outer layer adjacent to the n+-layer of the
GaAs structure dL was 1.0 mm (configuration 2 in
Fig. 1).

To find out the possibility to solve the prob-
lem of measuring thin conducting layers with high
and extremely high conductivity using frequency-
controlled TRs, the transmission (S21) and reflection
(S11) coefficients of the MPC containing a semicon-
ductor structure with a conductivity of the n+-layer
0.8 · 105 Ω−1m−1 and 1.6 · 105 Ω−1m−1 were calcu-
lated (Fig.2).

Fig. 1. Design of the one-dimensional waveguide MPC with
the semiconductor n+-n-i-structure: 1 – ceramic layer, 2 –
teflon layer, 3 – n+-n-i-structure, 4, 5, 6 – n+, n and i-lay-
ers, 7 – outer layer (ceramic) of the photonic crystal with the

changed thickness, adjacent to the n+-layer

а

b

Fig. 2. Calculated S11 (curves 1), S21 (curves 2) of the
MPC adjacent to the n+-layer of the semiconductor structure
with the conductivity equal to 0.8 ·105 Ω−1m−1 (solid curves)
and 1.6 ·105 Ω−1m−1 (dashed curves) for two thicknesses dL
of the MPC’s outer layer: а – 0.5 mm, b – 1 mm. S21 of the

MPC without the semiconductor structure is curve 3

The coefficients S11 and S21 were calculated by
the transfer matrix method with allowance for only
the fundamental H10 wave type propagation in the
waveguide [33, 40, 41].
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The frequency of the TRwas controlled by vary-
ing the thickness of the MPC’s outer Al2O3 ceramic
layer adjacent to the n+-layer.

As follows from the calculation results, for the
thickness dL of the MPC’s outer layer adjacent to the
n+-layer of the GaAs structure equal to 0.5 mm (this
is the thickness of all odd layers of theMPC), two res-
onances appear at frequencies fTamm1 = 7.476 GHz
and fTamm2 = 12.4 GHz. When the conductivity
of the n+-layer changes in the range from 0.8 ·×
× 105 Ω−1m−1 to 1.6 · 105 Ω−1m−1, the change of
S11 and S21 at the TR frequency fTamm1 is 2.4 dB
and 5.0 dB, and at fTamm2 it is 4.1 dB and 4.5 dB,
respectively. It should be noted that for the chosen
parameters of the GaAs structure’s layers, S21 and
S11 are mainly determined by the parameters of the
n+-layer.

With a thickness dL = 1.0 mm, the frequencies
are fTamm1 = 7.432 GHz and fTamm2 = 12.262 GHz.
At the frequency fTamm2 = 12.262 GHz with an in-
crease in the conductivity of the n+-layer in the
range from 0.8 ·105 Ω−1m−1 to 1.6 ·105 Ω−1m−1, the
change of S11 exceeds 20.0 dB, while the change of
S21 remains at the level of 3.5 dB.

Thus, the results of computer simulation demon-
strate that the frequency tuning of the TR in the
MPC can be implemented by choosing the thickness
of the outer Al2O3 ceramics layer of the MPC adja-
cent to the n+-layer. In this case, the tuning of the TR
frequency, which provides a high sensitivity of the
TR to the change of the conductivity of the heavily
doped layer, is determined by the conductivity value
of this layer.

2. Use of controlled TRs in the 1DMPC for measuring the
parameters of the heavily doped semiconductor layer

The experimental MPC created according to the
described above model was tested for the frequency
range 7–13 GHz.

For the experimental observation of the TRs,
the epitaxial semiconductor structure made of gal-
lium arsenide (GaAs) was used. It consisted of three
layers: n+, n and i-layers with the thicknesses of
1.8 µm, 11.4 µm, and 473.8 µm. The tested semi-
conductor structure was placed behind theMPC. The
highly doped epitaxial layer was directly adjacent to
its outer dielectric layer (Fig. 3).

To experimentally confirm the possibility of
tuning the TR frequency, which provides a high
sensitivity of the TR to the change of the conduc-
tivity of the heavily doped layer, two configurations
were considered: dL = 0.494mm (configuration 1 in
Fig. 1), dL = 0.973 mm (configuration 2 in Fig. 1).

Fig. 3. The experimental waveguide section with the MPC
and the tested layered GaAs sample

The experimentally obtained coefficients S11
and S21 of the MPC with the epitaxial semiconduc-
tor structure for two configurations, performed by
the network analyzer Agilent PNA-X N5242A, are
presented in Fig. 4.

Fig. 4. Experimental S11 (curves 1) and S12 (curves 2) of
MPCs with the three-layer GaAs structure for two different
configurations: solid curves – dL = 0.494mm; dotted curves –
dL = 0.973 mm. S21 of the MPC without the semiconductor

structure is curve 3

As follows from the experiment at the thick-
ness dL = 0.973 mm of the MPC’s outer layer, the
resonances are characterized by a low value of the
S11 at frequencies fTamm1 = 7.472 GHz and fTamm2 =
= 12.396 GHz. In this case, the depth and frequency
of TRs are controlled by the thickness of the MPC’s
outer layer adjacent to the n+-layer of theGaAs struc-
ture. This is in good agreement with the presented
above calculation results and demonstrates the pos-
sibility to tune the frequency of the photonic TR to
achieve a high sensitivity of the TR to changes of
the conductivity of the heavily doped layer. In this
case, the required value of the frequency tuning is
determined by the conductivity value of this heavily
doped layer.
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The implementation of the highly sensitive TR
makes it possible to use the method based on the
measurement of S21 and S11 of the MPC containing
the structure under test to determine the conduc-
tivity of the highly doped epitaxial semiconductor
n+-layer [33].

The sought value of the conductivity σn+ of the
n+-layer is defined numerically by the least squares
method from solving the equation:

∂δ(σ+)

∂σn+
= 0. (1)

Here

δ(σn+)=
K

∑
i=1

(∣∣S21 (σn+ , fexpi

)∣∣2−∣∣S21expi

∣∣2)2+
+
(∣∣S11 (σn+ , fexpi

)∣∣2−∣∣S11expi

∣∣2)2
 , (2)

where S21exp, S11exp are the experimental and
S21(σn+, f ), S11(σn+, f ) calculated transmission and
reflection coefficients.

Using the results of measuring S21 and S11 in the
vicinity of the TR frequency fTamm2 = 12.396GHz at
the thickness dL = 0.973mmof theMPC’ outer layer,
the value of the conductivity σn+ of the highly doped
epitaxial GaAs layer with the thickness 1.8 µm has
been determined as 0.843 · 105 Ω−1m−1 by solving
the inverse problem.

The measured S21, S11 and calculated ones by
using the obtained value σn+ = 0.843 · 105 Ω−1m−1

of the highly doped epitaxial GaAs layer agree well
as shown in Fig. 5.

Fig. 5. Measured (points) and calculated (curves) S11
(curve 1) and S21 (curve 2) by using the obtained value of the
conductivity 0.843 · 105 Ω−1m−1 of the MPC with the tested

GaAs structure

To evaluate the correctness of the results, ob-
tained by the method using the photonic TRs, the
conductivity measurements were carried out by an
independent method. A four-probe method based on
the measurement of the surface resistance ρwas used
as an alternative independent method for measuring
the conductivity σn+ of the GaAs n+-layer. The con-
ductivity, at known thickness d of the GaAs n+-layer,

is obtained from the well-known relation:

σn+ =
1

ρ ·d
. (3)

The measured by the Jandel RMS-EL-Z probe
station value of the surface resistance ρ was 7Ω per
square, which corresponds to the value of the con-
ductivity equal to 0.794 · 105 Ω−1m−1 with the n+-
layer thickness d = 1.8 µm.

Thus, the difference between the results of mea-
suring the conductivity of the highly doped GaAs
n+-layer using the microwave TRs and the surface
resistance is no more than 6.2%. It should be noted
that the relative error in measuring the surface re-
sistance of highly conducting layers in the selected
range of resistance values by the four-probe method
can reach 14%.

For the heavily doped semiconductor structures
with high electron mobility it is possible to observe a
pronounced plasma resonance in the infrared range.
This provides the possibility of obtaining the concen-
tration n+ of free charge carriers from measurements
of the plasma resonance frequency ωp using the re-
lation [42]:

n+ =
m∗ε0εL (ωp)

2

e2
, (4)

wherem∗ is the effective mass of free charge carriers,
depending on their concentration at a high doping
level [43], εL is the permittivity of the crystal lattice
in the infrared range [43].

In the infrared range from 350 to 7800 cm−1,
the reflection coefficient of the tested GaAs structure
was measured using the Shimadzu IRAffinity-1S
spectrophotometer (Fig. 6).

Fig. 6. Reflection coefficient of the tested layered GaAs sam-
ple in the infrared range

As follows from the measurement results, the
plasma frequency, defined as ωp = 2πc/λp is equal
to 1.192 · 1014 rad/s. Нere λ = λmin [(εL −1)/εL]

1/2,
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where λmin is the wavelength in the minimum of the
reflection coefficient in the infrared range.

Using the obtained value of the plasma fre-
quency ωp = 1.192 · 1014 rad/s and the expression
(4), the concentration has been determined as n+ =
= 3.9 ·1024m−3. The permittivity of the GaAs crystal
lattice in the infrared range was chosen equal to
10.89, the effective mass of charge carriers in GaAs
at this doping level was 0.078 ·me, where me is the
mass of a free electron.

To determine the free charge carriers mobility µ
in the tested GaAs n+-layer the well-known relation
µ=σn+/(en+), where n+ is the concentration of free
charge carriers, was used. The calculated value of
the mobility 0.134 m2/(V·s) correlates well with the
values known from the literature for heavily doped
GaAs layers [43, 44].

To evaluate the correctness of the results of the
mobility measurement using the photonic TRs and
plasma resonance, the mobility was measured inde-
pendently by the well-known method of microwave
magnetoresistance [45, 46].

In this method, the mobility is obtained from
the measured attenuation αm and α of the microwave
signal in the waveguide section containing the GaAs
structure with and without external magnetic field B,
respectively:

µ=
1
B

√
α−αm

αm
. (5)

The value of themobility of charge carriers mea-
sured using this method was 0.129 m2/(V·s).

The difference between the results of measuring
µ using the conductivity obtained by the method of
microwave TRs and by the methods of plasma reso-
nance and magnetoresistance is no more than 4.0%.

Thus, the use of controlled TRs in the one-di-
mensional MPCs and the additional observation of
the plasma resonance in the infrared range in the
tested semiconductor structure makes it possible to
implement along with the conductivity measurement
technique the method for determining the concentra-
tion of charge carriers and their mobility.

Conclusion

Thus, the approach aimed at solving the prob-
lem of measuring thin highly conducting layers with
high and extremely high conductivity, which are
used in various fields of microwave technology as
absorbers of electromagnetic radiation, bolometric
power meters in the millimeter and subterahertz

ranges, electromagnetic shields, elements of elec-
tronics and photonics with large areas, has been
developed in this work.

To achieve this goal, it is proposed to tune the
TR’s frequency in the MPC depending on the thick-
ness and conductivity of the conducting layers under
test. The control of the TR in theMPC is provided by
the change of the thickness of the outer layer of the
MPC adjacent to the conducting layer. In this case,
the required frequency tuning value is determined
by the value of the conductivity of the conducting
layer. The applicability of the developed approach
has been confirmed by the example of measuring
heavily doped semiconductor layers.

The developed method can also find application
for diagnostics of microwave microfluidic circuits,
flexible and stretchable antennas for biointegrated
electronics [47–49].
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