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2 L. XIAO, I. ZHUKOVdown if we admit inseparable extensions of residue �eld and this annot beeasily repaired.The remaining part of the survey desribes several approahes aimed toreprodue parts of the lassial theory in the non-lassial setting.Before disussing general onstrutions of the upper rami�ation �ltration,in §5 we onsider separately abelian extensions starting with an important aseof m-dimensional loal �elds (with �nite last residue �elds). The study of thisase an be helpful in development of appropriate intuition, espeially for thosefamiliar with higher loal lass �eld theory. Introdution of m-dimensionalloal �elds both determined interest to generalization of lassial rami�a-tion theory and suggested tools for this; development of eah of the mainapproahes to higher loal lass �eld theory (by Parshin, Kato, Fesenko) wasomplemented by studies of rami�ation theory for abelian extensions of suh�elds. We ontinue with a disussion of Kato's generalization of Swan ondu-tors, whih de�nes an upper rami�ation �ltration for an abelian extension ofany omplete disrete valuation �eld.
§6 is devoted to the desription of upper rami�ation �ltrations in the gen-eral ase. This setion inludes very di�erent approahes: that of Abbes andT. Saito using rigid analyti geometry, and their reinterpretation by means ofl-adi sheaves; that of Kedlaya and the seond author using p-adi di�erentialequations; that of Borger using generi perfetion; and that of Boltje, Cramand Snaith. We list the basi properties of the rami�ation �ltrations �rst, andthen disuss how to prove the properties using spei� onstrutions. We givereferenes on the omparison results among these onstrutions. At the end,we introdue the notion of irregularities with properties analogous to those oframi�ation.The next setion starts with the observation that we still do not have a \fullysatisfatory" rami�ation theory sine the upper rami�ation �ltration doesnot give us enough information about \na��ve" invariants inluding the lowerrami�ation �ltration; we sketh some requirements for a \satisfatory theory".We proeed to desribe an approah based on the theory of elimination ofwild rami�ation. It results in a onstrution bearing some properties of thelassial theory and giving additional information on the rami�ation of thegiven extension. This approah still does not �ll the gap but gives some roomfor further developments as mentioned at the end of the setion.
§8 and §9 are devoted to the approah of Deligne who started to analyze2-dimensional rami�ation problems by looking at all their 1-dimensional re-stritions. This makes sense in the ontext of 2-dimensional shemes, and wesuggest to study rami�ation in an extension of 2-dimensional loal �elds by



RAMIFICATION OF HIGHER LOCAL FIELDS 3\globalizing" the setting, i.e., onstruting a suÆiently nie morphism of om-plete 2-dimensional loal rings whih serves as a model for given extension.For suh morphisms Deligne's idea is appliable: we an look at the induedmorphisms of algebroid urves on spetra of 2-dimensional rings and use thelassial rami�ation invariants for them. This study is at a very beginningstage, with some initial observations and a lot of open questions.In §10, we disuss the rami�ation theory in a semi-loal or a global geomet-ri ontext, for the l-adi and p-adi realizations as well as for the analogousalgebrai D-module ase. We will fous on the study of behavior of loal in-formation: Abbes{Saito rami�ation �ltration, in a global ontext. The goalof the latter is to ompute the Euler harateristi in all three situations interms of the (loal) rami�ation data, in hope to generalize the Grothendiek{Ogg{Shafarevih formula. Furthermore, we hope to desribe or even de�nelog-harateristi yles using the rami�ation data.The last setion inludes some open questions whih we �nd urious andwhih are not overed in the previous text.We almost do not touh here asymptoti properties of rami�ation numbersin in�nite extensions and related notions of deeply rami�ed or arithmetiallypro�nite extensions exept for Subsetion 3.10; our subjet is restrited to thearea of �nite extensions of omplete �elds whih still remains full of mystery.We understand that the subjet is not fashionable and in many aspetslooks elementary. For this reason, various interesting results, observations,onjetures and questions have good hanes to remain unpublished or tendto be forgotten; some of the inluded questions an already have answers. Wewould be happy to learn more about what is known and what is unknown;please do not hesitate to send us your omments and suggestions.Anyway, we were onentrated mostly on the urrent state of the subjetand even more on open questions (hosen aording to our personal tastes);we did not aim to give a historial survey of the subjet and apologize forobvious inompleteness (and possible bias) of the presenting traes of historialinformation.We are very grateful to V. Abrashkin, I. Barrientos, D. Benois, I. Faizov,I. Fesenko, E. Lysenko, M. Morrow and the anonymous referee for valuableremarks. NotationIf K is a omplete disrete valuation �eld of harateristi 0 or p with theresidue �eld of harateristi p > 0, the following notation is used.
• � = �K : an arbitrary uniformizing element of K;



4 L. XIAO, I. ZHUKOV
• v = vK : the valuation on K as well as its (non-normalized) extension tothe algebrai losure of K; we normalize it so that v(�K) = 1;
• OK : ring of valuation in K;
• mK = { a ∈ OK : v(a) > 0 }: the maximal ideal of OK ;
• UK = O∗K ;
• Ui;K = 1 +miK , i > 1;
• | · |: the norm on K given by |�|v(·); when K is of mixed harateristi, werequire that |p| = p−1;
• K: the residue �eld of K;
• a: the residue lass in K of a ∈ OK ;
• e = eK = vK(p): the absolute rami�ation index of K;
• Kalg: an algebrai losure of K;
• Kab: the maximal abelian extension of K inside a given Kalg;
• GK : the absolute Galois group of K (often abbreviated to G when thereis no onfusion);
• �pn : a primitive pnth root of unity in Kalg (assuming harK = 0).For any integral sheme S, k(S) is the �eld of rational funtions on S. Foran integral domain A, Q(A) is its fration �eld.A representation of GK is always assumed to be ontinuous.

§1. Basi de�nitions1.1. Rami�ation invariants. Here we reall various rami�ation invari-ants assoiated with a �nite extension L=K where K is a omplete disretevaluation �eld with the residue �eld K of harateristi p > 0. We shall makea distintion between the lassial ase when K is perfet (or at least whenL=K is separable) and the non-lassial ase when this assumption is omitted.We mention without referene fats proved in [Se68℄ or [FV℄; in other ases,proofs or referenes are usually inluded.The most well-known rami�ation invariants are:
• the rami�ation index e(L=K) = vL(�K);
• the di�erent DL=K , whih an be de�ned, e.g., as the annihilator ideal ofthe OL-module of K�ahler di�erentials 
1

OL=OK ;
• the depth of rami�ationdM (L=K) = infa∈L(vM (TrL=K a)− vM (a));where M is any �nite extension of K.These three invariants are related by a simple formula [Hy, formula (1-4)℄:vL(DL=K) = e(L=K) − 1 + dL(L=K): (1)



RAMIFICATION OF HIGHER LOCAL FIELDS 5One of the fundamental properties of the depth is its additivity [Hy, Lemma(2{4)℄. Namely, for an intermediate �eld K ′ in L=K we havedM (L=K) = dM (L=K ′) + dM (K ′=K): (2)We have[L : K℄ = e(L=K)f(L=K) = et(L=K)ew(L=K)fs(L=K)fi(L=K) = etewfsfi;where (et; p) = 1, ew = pN for some N > 0, fs = [L : K℄sep, fi = [L : K℄ins.A �nite extension L=K is said to be:
• unrami�ed, if [L : K℄ = fs;
• totally rami�ed, if fs = fi = 1;
• tame, if ew = fi = 1;
• wild, if [L : K℄ = ew;
• feroious,1 if [L : K℄ = fi;
• weakly unrami�ed, if et = ew = 1;
• ompletely rami�ed, if et = fs = 1.Note that L=K is tame if and only if dL(L=K) = 0 [Hy, Remark (2-12)℄.If L=K is a Galois extension with Galois group G, for any � ∈ G one de�nesthe Artin and Swan rami�ation numbers by the formulasi(�) = iG(�) = infa∈OL vL(�(a) − a);s(�) = sG(�) = infx∈L∗

vL(�(a)a−1 − 1):In partiular, our onvention says iG(1) = sG(1) =∞.If OL is generated by x1; : : : ; xn as an OK-algebra, we haveiG(�) = infi vL(�(xi)− xi);sG(�) = infi vL(�(xi)x−1i − 1):In the lassial ase we have [Sn, 6.1.4℄:sG(�) = {iG(�)− 1; iG(�) > 0;0; iG(�) = 0:On the other hand, if L=K is feroious, then sG(�) = iG(�) for any � ∈ G.For an integer i > −1 the ith (\lower") rami�ation subgroup is de�ned asGi = {� ∈ G : iG(�) > i+ 1}: (3)1Suh extensions are more often referred to as �erely rami�ed; this is a translationof original Frenh expression \feroement rami��e". However, John Coates told one of theauthors that the English word \feroious" is more appropriate here than \�ere".



6 L. XIAO, I. ZHUKOVMore generally, for non-negative integers n and i, the (n; i)th rami�ationsubgroup is de�ned asGn;i = {� ∈ G : vL(�(x) − x) > n+ i for all x ∈ m
iL}:It is a normal subgroup in G. There is a need to onsider Gn;i with i > 0 onlyin the non-lassial ase. Indeed, in the lassial ase Gn;i = Gn−1 if p|i, andGn;i = Gn otherwise [dS, §2℄.The subgroups Gn = Gn+1;0 and Hn := Gn;1 form a �ltration on G [dS,Prop. 2.2{2.3℄: G ⊇ G0 ⊇ H1 ⊇ G1 ⊇ H2 ⊇ · · · ⊇ {1}Here G=G0 ≃ Gal(L=K) and (G : G0) = fs(L=K); G0=H1 is a yli group oforder et(L=K); H1 is a p-group of order ew(L=K)fi(L=K). The subgroups G0and H1 will be referred to as the inertia subgroup and the wild rami�ationsubgroup of G respetively.For i > 1, the subgroups Gn;i are non-informative, sineGn;i = {Hn; p ∤ i;Gn−1; p | i; when n > 1;and (when n = 1) G1;i=H1 is exatly the kernel of multipliation by i in theyli group G0=H1 (see [dS, Prop. 2.3℄).All elements of { s(�) : � ∈ G0; � 6= 1 } are alled the (\lower") rami�ationbreaks of L=K. If L=K is an inseparable normal extension, the rami�ationbreaks of L=K are de�ned as {the breaks of L0=K}∪ {∞} where L0=K is themaximal separable subextension of L=K.In the lassial ase the breaks are exatly the nonnegative integers i withGi 6= Gi+1. If (Gi : Gi+1) = pm, then i is alled a rami�ation break ofmultipliity m.For the rest of the subsetion, we assume that L=K is separable. For a Galoisextension L=K, the Hasse-Herbrand funtion 'L=K : [−1;∞) → [−1;∞) is apieewise linear map de�ned by the formula'L=K(u) = ∫ u0 dt(G0 : Gt) ;here it is assumed that Gt = G[t℄+1 for non-integral t, i.e., in the formula (3)we allow real numbers t, and (G0 : Gt) = 1 for t < 0. Sine 'L=K is stritlyinreasing, the inverse funtion  L=K is well de�ned.It is known that, for a normal subextension M=K, we have'L=K = 'M=K ◦ 'L=M :(It is essential here that we onsider the lassial ase!) Therefore, 'L=K anbe de�ned for an arbitrary �nite separable extension L=K by the formula



RAMIFICATION OF HIGHER LOCAL FIELDS 7'L=K = 'L′=K ◦  L′=L, where L′=K is any �nite Galois extension ontainingL=K.Using the Hasse{Herbrand funtion, we de�ne the \upper" rami�ation sub-groups Gu = G L=K(u) for all u > −1:The non-negative rational numbers u suh that Gv 6= Gu for any v > u arealled the upper rami�ation breaks of L=K. The biggest suh u is alled thehighest rami�ation break, denoted by b(L=K).The upper rami�ation breaks are exatly the ordinates of points on thegraph of 'L=K where the slope hanges, whereas the lower rami�ation breaksare their absissas. The number 0 is a break if and only if et 6= 1; the otherbreaks are alled wild. A hange of slope by a fator pm orresponds to a wildbreak of multipliity m. This property an be used as a de�nition of lowerand upper breaks for non-Galois �nite extensions L=K. (In this ase even thelower breaks need not be integral.)1.1.1. Example. Let L=K be a totally rami�ed yli extension of degree pn,and let s1 < · · · < sn be all Swan rami�ation numbers of L=K. Then L=Khave n upper breaks h1 < · · · < hn, all of multipliity 1, andhr = s1 + r∑i=2 si − si−1pi−1 = r∑i=1 p− 1pi si + 1pr sr: (4)1.2. m-dimensional omplete disrete valuation �elds. We give onlyde�nitions; see [HLF, Ch. I℄ for more information.For K a �eld, a struture of an m-dimensional omplete disrete valuation�eld (m-CDVF) on K is a sequene of �elds km = K, km−1, . . . , k0 suh thatki is a omplete disrete �eld with the residue �eld ki−1, 1 6 i 6 m. The �eldkm−1 (resp. k0) is referred to as the �rst (resp. the last) residue �eld of K.If the last residue �eld is perfet, K is said to be an m-dimensional loal�eld. (NB: often it is required that the last residue �eld is �nite.)A system of loal parameters of K is any m-tuple t1; : : : ; tm suh that eahti is a lifting to K of some uniformizing element of ki.Fix a system of loal parameters t1; : : : ; tm and onsider the mapvK = (v1; : : : ; vm) : K∗ → Zm;where vm = vkm , vm−1(�) = vkm−1(�m−1), �m−1 is the lass of �t−vm(�)min km−1, and so on. Then vK is a disrete valuation of rank m; here Zm islexiographially ordered as follows: i = (i1; : : : ; im) < j = (j1; : : : ; jm), if andonly if il < jl; il+1 = jl+1; : : : ; im = jm for some l 6 m:



8 L. XIAO, I. ZHUKOVIf we hange the system of loal parameters, the valuation is replaed by anequivalent one. Thus, vK is de�ned up to equivalene.For any �nite extension L=K, there exists a unique struture of an m-dimensional omplete disrete valuation �eld on L ompatible with that onK; the non-normalized (Qm-valued) extension of vK on L is also denotedby vK .The notion of depth of rami�ation an be generalized as follows [Hy, (1{3)℄:dM (L=K) = infa∈L(vM (TrL=K a)− vM (a));where both L and M are �nite extensions of K.
§2. Cyli extensions of degree p and genome2.1. Cyli extensions of degree p. Here we look arefully at the ase ofa Galois extension L=K with [L : K℄ = p (see also [Hy, Lemma (2-16)℄). Thisis important for disussing examples in the subsequent setions.We �x a generator � of the Galois group G = Gal(L=K); then i(�) and s(�)are independent of the hoie of �; so we put s(L=K) = s(�).Sine [L : K℄ = etewfsfi, and et is prime to p, there are 3 ases.Case U (unrami�ed): fs = p, ew = fi = 1. In this ase, i(�) = s(�) = 0.Case W (wild): ew = p, fs = fi = 1. Set s = vL(�(�L)=�L − 1). Then

OL = OK [�L℄ immediately implies i(�) = s+ 1 and s(�) = s.Case F (feroious): fi = p, fs = ew = 1. Choose any t ∈ OL suh thatt =∈ K. Set s = vL(�(t)=t − 1). Then OL = OK [t℄ and i(�) = s(�) = s.In all three ases we have dL(L=K) = (p− 1)s(L=K).Let us ompute the rami�ation invariants for spei� onstrutions of yliextension of degree p, i.e., for Artin{Shreier and Kummer extensions.1◦. harK = p. In this ase L = K(x) for x satisfying xp − x = a ∈ K. Weput }(X) = Xp −X. We have v(a) 6 0 sine mK ⊂ }(K) by Hensel's lemma.Choose an equation with maximal possible v(a).If v(a) = 0, the Hensel's lemma implies a =∈ }(K), and we are in Case U.If v(a) < 0 and p ∤ v(a), we are obviously in Case W, and s(L=K) = −v(a).If v(a) < 0 and p | v(a), the maximality of v(a) implies that �−v(a)a =∈ Kp.It follows that we are in Case F, and s(L=K) = −v(a)=p.2◦. harK = 0, �p ∈ K. In this ase L = K(x) for x satisfying xp = a ∈ K.We an hoose a with v(a) = 1 or v(a) = 0; in the latter ase we require thatl = v(a− 1) is maximal. Then we an distinguish 5 ases.A. v(a) = 1. Here we are in Case W, ands(L=K) = vL(�p − 1) = eLp− 1 = pep− 1 :



RAMIFICATION OF HIGHER LOCAL FIELDS 9B. v(a) = 0 and a =∈ Kp. This is Case F, ands(L=K) = vL(�p − 1) = eLp− 1 = ep− 1 :C. v(a) = 0, a = 1, l < pep−1 , p ∤ l. This is Case W, and s(L=K) = pep−1 − l.D. v(a) = 0, a = 1, l < pep−1 , p | l. From the maximality of l it follows thatthis is Case F, and s(L=K) = 1p( pep−1 − l).E. v(a) = 0, a = 1, l >
pep−1 . It follows from Hensel's lemma that in fatl = pep−1 , and this is Case U.2.2. Genome of an extension. Let L=K be a yli extension of degreepn. It an be uniquely written as a tower L =Mn=Mn−1= : : : =M1=M0 = K ofyli extensions of degree p. The genome of L=K is de�ned to be the wordT1 : : : Tn, where Ti = {W; if Mi=Mi−1 is wild;F; if Mi=Mi−1 is feroious:However, it is not lear how to de�ne the genome for a general Galoisextension of degree pn.2.2.1. Question. Let L=K be a ompletely rami�ed Galois extension. Canwe de�ne a tower L = Mn=Mn−1= : : : =M1=M0 = K of yli extensions ofdegree p in an \almost anonial" way so that the word T1 : : : Tn as above iswell de�ned?

§3. What is nie in the lassial aseThroughout this setion we onsider only the ase when K is perfet. Welist various fats whih are sometimes referred to as \beautiful rami�ationtheory" in the lassial ase. (Probably the whole olletion of fats has notbeen ever inluded in one text.)3.1. Fator groups. Let K ′ be an intermediate �eld in L=K. Then the ram-i�ation invariants of K ′=K an be desribed in terms of those of L=K. Morespei�ally, let L=K be a �nite Galois extension with G = Gal(L=K), and K ′an intermediate extension orresponding to a normal subgroup H. Then forany � ∈ G=H, � 6= 1, the Herbrand's theorem (see [Se68, Ch. IV, Prop. 3℄)says iG=H(�) = 1eL=K′

∑�H=� iG(�): (5)It follows that we have the following statement omparing the lower andthe upper rami�ation �ltrations on G=H with those on G.



10 L. XIAO, I. ZHUKOV3.1.1. Proposition. 1. For any v > −1 we have (G=H)v = G L=K′ (v)H=H.2. For any v > −1 we have (G=H)v = GvH=H.3.1.2. Corollary. If H = Gj for some j, then(G=H)i = {Gi=H; i 6 j;
{1}; i > j:One of the nie onsequenes of Prop. 3.1.1 is that we an de�ne the upperrami�ation �ltration for an in�nite Galois extensions L=K by the formulaGal(L=K)v = lim
←−L′=K �niteL′⊂L Gal(L′=K)v:In partiular, we have an upper rami�ation �ltration on the whole absoluteGalois group.3.2. Subgroups. Let L=K be a �nite Galois extension, andK ′=K any subex-tension. Put G = Gal(L=K) and H = Gal(L=K ′). Obviously, Hi = Gi ∩H forany i. Therefore,Hi = H L=K′ (i) = G L=K′ (i) ∩H = G'L=K◦ L=K′ (i) ∩H = G'K′=K(i) ∩H:3.3. Base hange. Here we observe how the rami�ation invariants hangeas one passes from L=K to LK ′=K ′ for some �nite extension K ′=K linearlydisjoint with L=K. We start with the basi ase of two Galois extensions ofdegree p.3.3.1. Lemma. 1. Let L1=K and L2=K be Galois extensions of degree p withpositive s1 = s(L1=K) and s2 = s(L2=K), and s1 < s2. Then s(L1L2=L2) =s1, and s(L1L2=L1) = s1 + p(s2 − s1).2. Let L1=K and L2=K be linearly disjoint Galois extensions of degree psuh that s = s(L=K) > 0 is the same for any subextension L=K of degree pin L1L2=K. Then s(L1L2=L2) = s(L1L2=L1) = s.Proof. Set L = L1L2 and G = Gal(L=K).Assume �rst that L=K has two distint lower rami�ation breaks s′1 < s′2.Put H2 = Gs′1+1, K ′ = LH2 . Then by Cor. 3.1.2 we haveGal(K ′=K)i = {Gal(K ′=K); i 6 s′1;

{1}; i > s′1;whene s(K ′=K) = s′1.



RAMIFICATION OF HIGHER LOCAL FIELDS 11Let K ′′=K be any other subextension of degree p in L=K. Put H =Gal(L=K ′′). Let �0 be any element of G outside H. Note that �0H ontainsa unique element of H2 whose Artin number is s′2 + 1. By (5),iG=H(�0|K′′) = 1p((p− 1) · (s′1 + 1) + 1 · (s′2 + 1)) = s′1 + s′2 − s′1p + 1:It follows that s(K ′′=K) = s′1 + s′2−s′1p . Sine s1 and s2 are among s(K ′=K)and (all) s(K ′′=K), and s1 < s2, we onlude that s1 = s′1, s2 = s′1 + s′2−s′1p .In the remaining ase when L=K has one break s′ of multipliity 2, the sameomputation shows that s(K ′′=K) = s′ for any subextension K ′′=K of degreep in L=K. �This an be generalized as follows.3.3.2. Proposition. Let L=K and K ′=K be �nite Galois p-extensions. As-sume that L=K have upper rami�ation breaks h1; : : : ; hr with multipliitiesm1; : : : ;mr. Assume that all the upper rami�ation breaks of K ′=K are distintfrom h1; : : : ; hr. Then the upper rami�ation breaks of LK ′=K ′ are  K′=K(h1);: : : ;  K′=K(hr) and their multipliities are m1; : : : ;mr.Proof. For [L : K℄ = [K ′ : K℄ = p, this is the �rst part of Lemma 3.3.1. Thegeneral ase follows by double indution on [L : K℄ and [K ′ : K℄. �3.3.3. Question. If L=K and K ′=K are Galois extensions of degree p withthe same rami�ation break, we annot determine the rami�ation invariantsof LK ′=K ′ in general. However, in view of the seond part of Lemma 3.3.1, wean do this if we know the rami�ation breaks of all subextensions of degreep in LK ′=K.How an this observation be generalized to arbitrary �nite Galois p-extensi-ons L=K and K ′=K?3.4. Filtration on the group of units and the norm map. For a �niteextension L=K, onsider the norm map NL=K : L∗ → K∗ and its interationwith the �ltration onK∗ given by the subgroups Ui;K for i > 1, and the similar�ltration on L∗. For any i > 1, de�ne f(i) by the onditionsNL=KUi;L ⊂ Uf(i);K ; NL=KUi;L 6⊂ Uf(i)+1;K :Then the map f = fL=K an be omputed from the rami�ation breaks ofL=K and vie versa, at least if the residue �eld K is in�nite. Indeed, [FV,Prop. (3.1)℄ states essentially the following.3.4.1. Proposition. Assume that K is in�nite. Let L=K be a �nite Galoisextension. Put  =  L=K . Then for any positive integer j we have f(i) = j, if (j − 1) + 1 6 i 6  (j).



12 L. XIAO, I. ZHUKOV3.4.2. Remark. Thus, for in�nite K, fL=K(i) is equal to the minimal in-teger not less than 'L=K(i). If K is �nite, fL=K(i) an \jump" at the lowerrami�ation breaks of L=K.3.4.3. Question. How to express fL=K in terms of 'L=K when K is �nite?3.4.4. Question. What is the exat relation between fL=K and 'L=K for anon-Galois extension L=K?3.5. Artin{Shreier and Kummer �ltrations and the embedding map.First assume that harK = p. Then we have a �ltration on K=}(K) by thesubgroups Ci;K = (miK + }(K))=}(K); i 6 0:(Reall that mK ⊂ }(K) by Hensel lemma.) Then, for a �nite extension L=K,we an onsider the interation of this �ltration with a similar one on L=}(L).For i > 0, let g(i) denote the unique integer suh that "(C−i;K) ⊂ C−g(i);L and"(C−i;K) 6⊂ C−g(i)+1;L, where " : K=p(K) → L=p(L) is the natural map.In the same spirit, if harK = 0, �p ∈ K, we an onsider the �ltration onK∗=(K∗)p given by the subgroupsC∗i;K = Ui;K(K∗)p=(K∗)p; 1 6 i 6
pep− 1 :(Reall that U pep−1+1;K ⊂ (K∗)p.) For a �nite extension L=K and a positiveinteger i < pep−1 , we let g(i) denote the unique integer suh that "(C∗pep−1−i;K)

⊂C∗pep−1−g(i);L and "(C∗pep−1−i;K)
6⊂ C∗pep−1−g(i)+1;L, where " : K∗=(K∗)p → L∗=(L∗)pis the natural map.The funtion g = gL=K in both ases is losely related to  =  L=K . Namely,Prop. 3.3.2 and expliit omputation of the rami�ation break for an Artin{Shreier or Kummer extension immediately imply the following3.5.1. Proposition. Let i be a positive integer not divisible by p and dis-tint from any upper rami�ation break of L=K. (We also require i < pep−1 ifharK = 0.) Then g(i) =  (i).If K is in�nite, we an use the seond part of Lemma 3.3.1 to prove3.5.2. Proposition. When K is in�nite and when i is a positive integer notdivisible by p (provided i < pep−1 if harK = 0), we have g(i) =  (i).Sine the upper breaks are always prime to p, this means that g determinesthe rami�ation invariants of L=K whenever harK = p or K is in�nite.Similarly, if �pn ∈ K, one an de�ne an expliit �ltration on K∗=(K∗)pnompatible with the upper rami�ation �ltration on the maximal abelian ex-tension of K of exponent p.



RAMIFICATION OF HIGHER LOCAL FIELDS 133.5.3. Question. Can we reover the funtion  L=K from the �ltrations onK(�pn)∗=(K(�pn)∗)pn for all n, thus eliminating the ondition i < pep−1 inProp. 3.5.2?If harK = p, the expliit form of the �ltration on Wr(K)=}(Wr(K)) om-patible with the rami�ation �ltration is given in [Br, §1℄. Here Wr denotesthe group Witt vetors of length r, and}((x0; : : : ; xr−1)) = (xp0; : : : ; xpr−1)−Wr(K) (x0; : : : ; xr−1);note that Brylinski uses a di�erent notation. For a new proof and very leartreatment of related questions, see [Th℄.3.6. Hasse{Arf theorem.3.6.1. Theorem. Let L=K be a �nite abelian extension. Then all upper ram-i�ation breaks of L=K are integral.See [Se68, Ch. IV, §3℄, [FV, Ch. III, (4.3)℄.An inverse result is due to Fesenko [Fe95b℄.3.6.2. Proposition. Let L=K be a totally rami�ed �nite Galois extensionsuh that for any totally rami�ed �nite abelian extension K ′=K all upper ram-i�ation breaks of LK ′=K ′ are integral. Then L=K is abelian.3.6.3. Question. Can we replae the lass of all abelian extensions K ′=K bya smaller lass here, e.g., by the lass of all elementary abelian extensions, atleast in the ase harK = p?3.6.4. Question. For a �nite Galois extension L=K, an we determineGal(L=K), if we know all upper rami�ation breaks of LK ′=K ′ for all abelianextensions K ′=K?One of the related results is the following Sen ongruene (see, e.g., [Sn,Theorem 6.1.34℄).3.6.5. Proposition. Let L=K be a �nite Galois extension, � ∈ Gal(L=K)suh that s(�) > 0 and �pn 6= 1. Thens(�pn−1)
≡ s(�pn) mod pn:3.7. Artin and Swan representations. (See [Se68, Ch. VI℄, [Se77℄ as wellas the disussion in [Sn, 6.1℄.) Fix a �nite Galois extension L=K, and put G =Gal(L=K). We de�ne the Artin and Swan entral funtion aG; swG : G → Z



14 L. XIAO, I. ZHUKOVby formulas aG(�) = {
−f · iG(�); � 6= 1;f ∑� 6=1 iG(�); � = 1;swG(�) = {
−f · sG(�); � 6= 1;f ∑� 6=1 sG(�); � = 1;where f = f(L=K).The Serre's theorem on the existene of Artin representations [Se77, p. 68℄laims.3.7.1. Proposition. The entral funtions aG and swG are haraters ofertain omplex representations of G.For the orresponding representations AG and SWG we have the follow-ing expliit formulas in the ring of omplex representations R(G) (ited from[Sn, 6.1℄): AG = ∞∑i=0 [G0 : Gi℄−1IndGGi(IndG{e}(1)− 1)and SWG = AG + IndGG0(1)− IndG{e}(1);where IndGH(V ) denotes the representation of G indued by the representa-tion V of H, and 1 is the lass of 1-dimensional trivial representation of theorresponding group.For a normal subgroup H of G it follows from Herbrand's theorem thatSWG=H ≃ SWG ⊗C[G℄ C[G=H℄: (6)For the harater � of a omplex representation V of G, the Artin ondutorof � (or V ) is de�ned asArK(�) = ArK(V ) = 〈aG; �〉G = 1

|G|

∑g∈G aG(g)�(g):Similarly, the Swan ondutor of � (or V ) isSwK(�) = SwK(V ) = 〈swG; �〉G = 1
|G|

∑g∈G swG(g)�(g);we have SwK(V ) = ArK(V ) + dimV G0 − dimV:



RAMIFICATION OF HIGHER LOCAL FIELDS 153.7.2. Example (see [Se68, Ch. VI, Prop. 5℄). Let L=K be a totally rami�edyli extension of degree pn, and � the harater of any faithful (i.e., inje-tive) representation of G = Gal(L=K) = 〈g〉. Let s1 < · · · < sn be all Swanrami�ation numbers of L=K. ThenSwK(�) = 1pn pn∑i=1 �iswG(gi)= 1pn n∑r=0 ∑vp(i)=r �iswG(gi)= −
1pn n−1∑r=0 sr+1 ∑vp(i)=j �i + 1pn pn−1∑i=1 sG(gi)= 1pn(sn + n−1∑r=0(pn−r − pn−r−1)sr+1)= b(L=K)in view of (4), where � is a primitive pnth root of unity in C.3.7.3. Remark. This is the simplest ase of the following fat (see [Se68,Ch. VI, §2, Ex. 2℄). Let V be an irreduible representation of G of dimen-sion d. Then ArK(V ) = d(b(L=K) + 1), where b(L=K) is the highest (upper)rami�ation break de�ned in Setion 1.1.As a onsequene of this fat, we may de�ne the Artin ondutor and Swanondutor of a �nite dimensional omplex representation V of G to beArK(V ) = ∑a>−1(a+ 1) · dimV Ga+=V Ga ; SwK(V ) = ∑a>0 a · dimV Ga+=V Ga:Note that one an reover the rami�ation �ltration on G from Artin on-dutors of all its irreduible representations. (The same does not hold for Swanondutors sine Swan ondutor measures only wild rami�ation and does notknow anything about (G0 : G1).)In a similar way, one an de�ne Swan ondutors for Fl-representations;this version of Swan ondutor is used in the Grothendiek{Ogg{Shafarevihformula (see Subsetion 3.11 below).There is an alternative and equivalent way of stating Proposition 3.7.1.3.7.4. Proposition. For all �nite dimensional omplex representation V ofG, the Artin ondutor ArK(V ) and the Swan ondutors SwK(V ) are non-negative integers.



16 L. XIAO, I. ZHUKOVApplying this to all one-dimensional representations of G and using theabove expliit desription of Artin and Swan ondutors (Remark 3.7.3), weobtain that b(L=K) is always an integer for an abelian extension L=K. Thus,we reover the original Hasse{Arf Theorem 3.6.1. So sometimes the aboveproposition will be also referred to as the Hasse{Arf theorem.3.8. Loal lass �eld theory. Let K be a omplete disrete valuation �eldof any harateristi with a quasi-�nite residue �eld of prime harateristi.(A �eld F is alled quasi-�nite if GF ≃ Ẑ.)The entral theorem of loal lass �eld theory states that there exists ahomomorphism �K : K∗ → Gal(Kab=K) uniquely determined by the follow-ing two properties.1. For any �nite abelian extension L=K, �K indues an isomorphism �L=K :K∗=NL=KL∗ → Gal(L=K).2. For any prime element �K , the restrition of �K(�K) on the maximalunrami�ed extension of K is the Frobenius automorphism.It appears that the reiproity map transforms the valuation �ltration onthe multipliative group into the upper rami�ation �ltration on (abelian)Galois group. More preisely, we have the following results. ([Se68, Ch. XV,Th. 1 with Cor. 3 and Th. 2℄. Note that NL=KU (n);L ⊂ Un;K by Prop. 3.4.1.)3.8.1. Proposition. Let L=K be a �nite abelian extension. Put  =  L=K.1. For any positive integer n, the anonial map Un;K=NL=KU (n);L →K∗=NL=KL∗ is injetive.2. The reiproity map �L=K transforms the �ltration on K∗=NL=KL∗ bysubgroups Un;K=NL=KU (n);L into the �ltration on G = Gal(L=K) by Gn.3.8.2. Proposition. Let L=K be a possibly in�nite abelian extension withGalois group G = Gal(L=K). Then for any positive integer n, the image of�K(Un;K) ⊂ Gal(Kab=K) in G is dense in Gn (and is equal to Gn if theresidue �eld K is �nite).In harateristi 0, provided �p ∈ K, this implies the self-duality of thevaluation �ltration on K∗=(K∗)p with respet to the Hilbert symbol. In har-ateristi p, we have a duality between the valuation �ltration on K∗=(K∗)prand the Brylinski �ltration on Wr(K)=}(Wr(K)), see [Br, Theorem 1℄.For Fesenko's non-abelian reiproity map [Fe01℄, ompatibility with therami�ation �ltration was established in [IS℄.3.9. Loal anabelian geometry. Let K1 and K2 be loal �elds (ompletedisrete valuation �elds with �nite residue �elds) suh that there exists anisomorphism between absolute Galois groups of K1 and K2 preserving the



RAMIFICATION OF HIGHER LOCAL FIELDS 17rami�ation �ltration. Then this isomorphism is indued by an isomorphismbetween K1 and K2.This was �rst proved in the harateristi 0 ase by Sh. Mohizuki [Mo-S℄.A proof suitable for any harateristi was given by Abrashkin [Abr00, Abr10℄.3.10. A theorem of Deligne. Let K and K ′ be two omplete disrete val-uation �elds (typially with large absolute rami�ation indies in the ase ofmixed harateristi). Assume that there exists b ∈ N suh that there is anisomorphism OK=�bKOK ∼= OK′=�bK′OK′ as rings. Deligne [De84℄ proved thefollowing result.3.10.1. Proposition. Keep the notation as above. If K has a perfet residue�eld, then there is a anonial isomorphismGK=GbK ∼= GK′=GbK′ : (7)In other words, the quotient Galois groups above depend only on the trun-ated disrete valuation rings OK=�bKOK ∼= OK′=�bK′OK′ . Note that therewere no assumptions on the harateristis of K and K ′. In partiular, theyould be di�erent, whih may be used to build a onnetion between the mixedharateristi �elds and the equal harateristi �elds on the aspet of rami�-ation theory.Deligne's theorem provides an alternative way to understand the �eld ofnorms of Fontaine and Wintenberger [FW1, FW2℄ (whih preedes Deligne'swork).Put Kn = Qp(�pn) for n ∈ N and K∞ = ∪n∈NKn. We take the uniformizer�Kn to be �pn − 1. Then the tower (Kn)n∈N is APF (short for arithmetiallypro�nite) in the sense of [FW1, FW2℄. The following statement is a speialase of the main result of Fontaine{Wintenberger [FW1, FW2℄ (exposed alsoin [FV, Ch. III, Theorem 5.7℄).3.10.2. Theorem. There is a anonial isomorphism between the absoluteGalois group of K∞ and that of the equal harateristi �eld Fp((T )).One an give a heuristi proof using Deligne's theorem as follows. For eahn, we put rn = pn−1(p−1) so that OKn=�rnKn ∼= Fp[[T ℄℄=(T rn). Deligne's theoremthen implies that we have an isomorphismGFp((T ))=GrnFp((T )) ∼= GKn=GrnKn : (8)An easy omputation shows that 'Kn=K(n) = rn. The basi property in Sub-setion 3.2 implies that GrnKn = GnQp ∩ GKn. Thus, taking the inverse limit of(8) gives an isomorphism between GFp((T )) and GK∞
.We expet that the same proof works for general omplete disrete valuation�eld K in plae of Qp, at least when the residue �eld K is perfet, and hene



18 L. XIAO, I. ZHUKOVwe ould reprove the main result of [FW1, FW2℄ this way. The APF onditionis expeted to ensure that the inverse limit of (8) as n→ ∞ gives the isomor-phism between the Galois group of K∞ and that of K((T )). Unfortunately,we do not know if suh a proof exists in the literature.3.11. Global formulas. Let X be a smooth projetive urve over an alge-braially losed �eld and let Y be its normalization in a �nite extension ofk(X ). Riemann{Hurwitz formula ompares the genera of these urves:2gY − 2 = [k(Y) : k(X )℄(2gX − 2) +∑Q vQ(DY=X );where Q runs over all losed points of Y.Let U be a dense open subset of X , �� a geometri generi point of X , and Fa loally onstant sheaf of Fl-modules of �nite rank on U�et. Then the geometrigeneri �berM = F�� is a �nite-dimensional Fl-representation of Gal(k(X )); itfators through Gal(L=k(X )), where L=k(X ) is some �nite Galois extension.For a losed point P of X , the Swan ondutor SwP F is de�ned as the Swanondutor of M onsidered as Gal(Lw=k(X )v)-module, where v orrespondsto P , and w is any extension of v to L. Independene of L follows from an Fl-analog of (6). Then the Grothendiek{Ogg{Shafarevih formula for F reads:�(U;F) = �(U;Fl) rankF −
∑P∈X\U SwP F ; (9)where �(U; ·) is the Euler-harateristi of the orresponding �etale sheaf. (Thisan be obtained from the shape of G.-O.-S. formula in [Mil℄ as follows. Letu : U ,→ X , F0 a onstant sheaf on U�et of rank equal to rankF . Apply theformula in [Mil, Ch. V, Th. 2.12℄ to both u!F and u!F0 and ompute thedi�erene.)See [K�o℄ for equivariant versions of Riemann{Hurwitz and Grothendiek{Ogg{Shafarevih formulas.3.11.1. Remark. We point out that there is an analogous statement forlisse Ql-sheaves instead of lisse Fl-sheaves.2 In fat the formula for the formerredues to that of the latter, as we explain now.A lisse Ql-sheaf F orresponds to a representation � : �1(U) → GLd(Ql).Sine the fundamental group is pro�nite and hene ompat, the image �(�1(U))lands in GLd(Zl) (up to onjugation). This integral representation �◦ gives riseto a lisse Zl-sheaf F◦. Put �� = �◦mod l and �F = F◦=l. It is not diÆult to2We an of ourse onsider a �nite extension of Ql in plae of Ql; the argument goesthrough with no essential hanges.



RAMIFICATION OF HIGHER LOCAL FIELDS 19show that the Euler harateristi of F agrees with that of �F . We need tomath the Swan ondutors.Note that, for eah point P ∈ X\U , the wild rami�ation group WP atP is a pro-p group; but the kernel of GLd(Zl) → GLd(Fl) is a pro-l group.Hene the image �(WP ) has trivial intersetion with Ker(GLd(Zl) → GLd(Fl));onsequently, we have an isomorphism �(WP ) ∼= ��(WP ). From this it is learthat SwPF = SwP �F , sine both sides depend only on the ation of the wildinertia group.3.12. Completeness. Given a �nite Galois extension of omplete disretevaluation �elds L=K with Gal(L=K) = G, we have a number of rami�ationinvariants ourring in various formulas: e(L=K), vL(DL=K), Gi and Gi fori > 0, ArK(V ) and SwK(V ) for a omplex representation V of G. However,there is a suÆient system of rami�ation invariants, namely, the lower rami-�ation �ltration, whih \desribes the rami�ation ompletely": all the otherrami�ation invariants (inluding loal terms of lassial global formulas) anbe expressed in terms of it. (Upper rami�ation �ltration is a suÆient systemof invariants as well. The same is true for Artin ondutors of all omplexrepresentations of G.) For example,e(L=K) = |G0|;vL(DL=K) = ∞∑i=0 |Gi| − 1; (10)and SwK(V ) = ∞∑i=1 1(G : Gi) dimC(V=V Gi);where V is a �nite-dimensional omplex representation of G.
§4. What is missing in the non-lassial aseThis setion is devoted to the detailed study of an example of extension L=Kwith Gal(L=K) ≃ (Z=p)2 for whih Lemma 3.3.1 (as well as any reasonableanalog of it) fails. Furthermore, the example exhibits obstales to extension ofthe most part of the lassial theory to the general ase.Let K be a omplete disrete valuation �eld of harateristi p > 0 withimperfet residue �eld. Fix a prime element � and t ∈ OK suh that t 6∈ Kp.Take some positive integers N > n > m suh that N ≡ n ≡ −1 (mod p). Nowwe de�ne L1=K and L2=K by Artin{Shreier equations:K1 = K(x1); xp1 − x1 = a1 = �−n + �−mt;K2 = K(x2); xp2 − x2 = �−N ; (11)



20 L. XIAO, I. ZHUKOVand set L = K1K2 = K(x1; x2) = K1(x2) = K2(x1).In view of the onsiderations in §2, both K1=K and K2=K are wild, ands(K1=K) = n, s(K2=K) = N . Note also that for any subextension K ′=K ofdegree p in L=K we have s(K ′=K) = N unless K ′ = K1.LK1 |||||||| K2?BBBBBBBBKnBBBBBBBB N||||||||Let us ompute s(L=K2). Put N = pD−1. Then �2 = x2�D is a uniformizerof K2. The equation (�Dx2)p − �(p−1)D(�Dx2) = �implies that � = �p2 − �(p−1)pD+12 + · · · ;where the dots denote terms of higher order. Thus,a1 = (�p2 − �(p−1)pD+12 + · · · )−n + (�p2 − �(p−1)pD+12 + · · · )−mt= �−pn2 (1− �(p−1)pD−p+12 + · · · )−n + �−pm2 (1− �(p−1)pD−p+12 + · · · )−mt= �−pn2 (1 + n�(p−1)N2 + · · · ) + �−pm2 (1 +m�(p−1)N2 + · · · )t= �−pn2 + n�−pn+(p−1)N2 + · · ·+ �−pm2 t+ · · ·

≡ �−n2︸︷︷︸
−n +n�−pn+(p−1)N2︸ ︷︷ ︸

−pn+(p−1)N + · · ·+ �−pm2 t︸ ︷︷ ︸
−pm + · · · (mod }(K2));where the numbers under the braes denote the orresponding values of vK2 .Assume further that m > np . Sine −n < −pn+N(p− 1), the valuation ofthe sum is −pm. We an onlude that L=K2 is feroious, and s(L=K2) = m.Note that the latter number is not determined by the values of n = s(K1=K)and N = s(K2=K). (However, if m < np , the valuation of the sum is −n, theextension L=K2 is wild and s(L=K2) = m. In fat, we are in the lassial asehere.)We see that an analog of Lemma 3.3.1 is not true in the general ase: weannot predit s(L=K2) even having known the s(K ′=K) for any subextensionK ′=K of degree p in L=K.



RAMIFICATION OF HIGHER LOCAL FIELDS 21Next, the \ompatibility with fator groups" property also fails in the gen-eral ase. Indeed, from the depth additivity (2) we havedL(L=K) = dL(L=K2) + dL(K2=K) = (p− 1)m+ (p− 1)Nand dL(L=K1) = dL(L=K)− dL(K1=K) = (p− 1)(m +N)− (p− 1)n;whene s(L=K1) = m + N − n. Therefore, the two breaks of the (lower)rami�ation �ltration of L=K are m and m+N − n, and these two numbersdo not give enough information to determine, say, s(K1=K) = n.Essentially, this example shows that we annot give a suitable de�nition of\upper rami�ation �ltration" based on the usual (Artin or Swan) rami�ationnumbers, and onsequently we lose all onstrutions and fats using this upper�ltration: Hasse{Arf theorem, Artin and Swan representations, global formulaset.Also, we do not have any \ompleteness" for the known systems of in-variants. In partiular, one of the motivating goals in the development of a\non-lassial" rami�ation theory ould be to obtain an expliit form for theorder of di�erent (or, equivalently, for the depth of rami�ation) in terms ofsuitable lower or upper rami�ation breaks, i.e., an analog of (10).For more examples showing \mysterious behavior" of rami�ation invariantsin the non-lassial ase (see [Hy℄, [Sn, 6.2℄, [Lo℄).
§5. Upper rami�ation �ltration: abelian extensionsAs we ould see in the previous setion, the lassial rami�ation invariantsbehave poorly when the residue �eld K is no longer perfet. In partiular,we annot expet any theory of upper rami�ation �ltration based on usualrami�ation numbers. However, one an be interested in an \independent"onstrution of an upper �ltration per se with properties analogous to someproperties of the upper �ltrations in the lassial ase, e.g., to some of thosestated in Subsetions 3.1, 3.6, 3.7, 3.8, 3.9, 3.10, 3.11.Fortunately, there is a quite satisfatory theory for the upper rami�ation�ltrations, whih now beomes standard. The general onstrution will beaddressed in the next setion, and here we are onentrated on the ase ofabelian extensions.5.1. Upper �ltration via lass �eld theory. Note that for abelian exten-sions of usual loal �elds the upper rami�ation �ltration an be reoveredfrom the �ltration on the multipliative group by Prop. 3.8.1. In the sameway one ould de�ne an upper rami�ation �ltration in the situations wheresome lass �eld theory is available, e.g., for abelian extensions of higher loal



22 L. XIAO, I. ZHUKOV�elds with �nite last residue �eld (see [HLF℄ for the basi fats about higherloal �elds and [Fe96℄ for a survey of various versions of higher loal lass �eldtheory). This approah was explored in several papers starting from [Lo℄. Forexample, Hyodo [Hy℄ de�nes (\upper") rami�ation breaks for a �nite abelianextension L=K of m-dimensional loal �elds (with �nite last residue �eld) asm-tuplesjL=K(l) = {max{i ∈ Zm+ : |�L=K(UiKtopm K)| > pl}; if suh i exists;0; otherwise, (12)for all l > 1, where �L=K : Ktopm K → Gal(L=K) is the reiproity mapand (UiKtopm K) is the standard �ltration on Ktopm K de�ned by means of thevaluation of rank m:UiKtopm K = 〈 {u; x2; : : : ; xm} |u; x2; : : : ; xm ∈ K∗; vK(u− 1) > i 〉:In other words, for i = (i1; : : : ; im) > 0, the subgroup Gi in G = Gal(L=K)is de�ned as �L=K(UiKtopm K) assuming that the last residue �eld of K is�nite. (Reall that �L=K indues an isomorphism from Ktopm K=NL=KKtopm Lonto Gal(L=K).) If we are not interested in multi-index numbering, we anput Gi = ⋃im=iGifor any positive integer i.For the ase of arbitrary perfet last residue �eld, see [Fe95a, §4℄.Using this de�nition, one an translate questions onerning rami�ation inabelian extensions of m-dimensional loal �elds into questions about natural\valuation" �ltration on groups Ktopm K. In partiular, the behavior of theupper �ltration on Gal(L=K) with respet to the restrition to a subgroupGal(L=K ′) is related to the ation of the norm map NK′=K : Ktopm K ′ → Ktopm Kon the valuation �ltration.5.2. Kato{Swan ondutor. In a ompatible manner with the above on-strution, Kato [Ka89℄ introdued a notion of a ondutor for one-dimensionalrepresentations of Gal(L=K), where L=K is a �nite extension of a ompletedisrete valuation �eld with any residue �eld.We do not inlude Kato's de�nition, sine it is diÆult to do this in a self-ontained manner; see, e.g., [Sn, 6.2℄. However, his ondutor KSw(�) an beharaterized by either of the following two properties [Sp99, Prop. 3.3.10 andCor. 3.3.11℄.



RAMIFICATION OF HIGHER LOCAL FIELDS 235.2.1. Proposition. Let � ∈ H1(K) be a harater of Gab = Gal(Kab=K);denote by L� the sub�eld in Kab �xed by �.1. KSw(�) is the smallest integer n > 0 suh that {�L0 ; u} = 0 in BrL0 forany u ∈ Un+1;L0, where L0 is the maximal unrami�ed subextension in L�=K.2. KSw(�) is the smallest integer n > 0 suh that Un+1;K ⊂ NL�=KL∗�.Here H1(K) = Hom(Gab;Q=Z); the braes denote the ohomologial pair-ing H1(K)×K∗ → H2(K) ∼= BrK.From this, one an de�ne a �ltration Gab;• on Gab so that, for any harater� of Gab, we have KSw(�) = inf{a > 0 |Gab;a ⊆ Ker�};we all this �ltration the Kato �ltration on Gab.For an m-dimensional loal �eld K with �nite last residue �eld and � ∈H1(K), KSw(�) is exatly the smallest integer n > 0 suh that �L=K(UiKtopm K)ats trivially on L� whenever im > n, see [Sp99, 3.4℄. In other words, KSw(�)is the last omponent of the maximal break j(1) for L�=K in Hyodo's nota-tion (12).In the lassial ase this Kato{Swan ondutor oinides with the usualSwan ondutor. This relation between KSw and the usual (Swan) rami�ationnumbers is in fore also in the so-alled Case II (f. Subsetion 7.2) [Ka89,Prop. 6.8, p. 12℄.5.2.2. Proposition. Let L=K be a �nite Galois extension and � : GL=K → C∗a one-dimensional representation. Assume that either L=K is separable ore(L=K) = 1 and L=K is generated by one element. ThenKSw(�) = −
1e(L=K) ∑�∈GL=K s(�)�(�);where we use the onvention that s(1) = −

∑�∈GL=K ;� 6=1 s(�). (See Subse-tion 1.1 for the de�nition of s(�).)
§6. Upper rami�ation �ltration: general aseIn this setion, we disuss a few approahes whih generalize the rami�ation�ltration onstruted by Kato to the whole Galois group. Before giving theonstrutions, we list their properties in the �rst three subsetions, providedwith typial examples. We then turn into various onstrutions and relatedtopis on the subjet in the following subsetions.



24 L. XIAO, I. ZHUKOV6.1. Basi properties. Let K be a omplete disrete valuation �eld as be-fore with possibly imperfet residue �eldK of harateristi p. In partiular,Kould be of either mixed harateristi or equal harateristi. Let G = GK bethe Galois group of K. There exist two rami�ation �ltrations G•nlog and G•logon G, indexed by non-negative rational numbers; they are alled the (upper)non-logarithmi rami�ation �ltration and (upper) logarithmi rami�ation �l-tration of G, respetively. Roughly speaking, the adjetives \non-logarithmi"and \logarithmi" refer to di�erent normalizations to balane the \wild part"and the \feroious part" of the rami�ation. In partiular, when K is perfet,both of these �ltrations are the same (up to a shift of indexing) as the usualupper rami�ation �ltration. (See property (5) below.)We use the standard onvention for rami�ation �ltrations: for a ∈ R>0,we write Ganlog to mean the losure of ∪b>a;b∈Q>0Ganlog and Ga+nlog to meanthe losure of ∪b>a;b∈Q>0Ganlog; and the same for the logarithmi rami�ation�ltration. For L a �nite Galois extension of K, we use bnlog(L=K) to denotethe highest non-logarithmi rami�ation break inf{b |Gbnlog ⊆ GL}; and thesame for the logarithmi rami�ation �ltration.The basi properties are listed as follows (proved in [AS02℄).(1) Both �ltrations are left ontinuous, with rational breaks.(2) For 0 < a 6 1, Ganlog is the inertia subgroup of G (inverse limit ofinertia subgroups over �nite subextensions).(3) G1+nlog = G0+log is the wild rami�ation subgroup of G (inverse limit ofwild rami�ation subgroups over �nite subextensions).(4) For any a > 0, we have inlusions Ga+1nlog ⊆ Galog ⊆ Ganlog (whih arestrit inlusions if K is not perfet).(5) If K is perfet, we have Ga+1nlog = Galog = Ga for all a > 0; here (Ga) isusual upper rami�ation �ltration.(6) If K ′=K is a �nite unrami�ed extension, then both �ltrations on GK′are indued by those on GK .(7) IfK ′=K is a �nite tame extension with e(K ′=K) = m, then (GK′)malog =(GK)alog for any a > 0.(8) If K ′=K is any �nite extension with e(K ′=K) = m, then (GK′)malog ⊂(GK)alog for any a > 0.The following is a typial example of rami�ation breaks.6.1.1. Example. LetK = K((�)) be an equal harateristi omplete disretevaluation �eld and let L = K(z) be an Artin-Shreier extension given byzp − z = a�−n for a ∈ K[[�℄℄∗ and n ∈ N. We assume that the generator z is



RAMIFICATION OF HIGHER LOCAL FIELDS 25hosen so that n is minimal (see §2). The Galois group Gal(L=K) is isomorphito Z=pZ.(1) If p ∤ n, then we have bnlog(L=K) = n+ 1 and blog(L=K) = n.(2) If p|n, then we have blog(L=K) = bnlog(L=K) = n.Another important property of these two upper rami�ation �ltrations isthe integrality of the assoiated Artin and Swan ondutors. For a �nite dimen-sional representation � : GK → GL(V ) with �nite image, we put bnlog(�) =bnlog(V ) := bnlog(L=K) and blog(�) = blog(V ) := blog(L=K), where L is the�nite extension of K orresponding to the kernel of �. Under very mild teh-nial restritions, these rami�ation �ltrations enjoy the following Hasse{Arfproperty, as proved in [X10, X12a℄.6.1.2. Theorem. Assume either K is of equal harateristi, or p > 2 andK is not absolutely unrami�ed (i.e. p is not an uniformizer). Let � : GK →GL(V ) be an irreduible representation with �nite image. Then the Artin on-dutor Art(�) := bnlog(�)·dim � and the Swan ondutor Sw(�) := blog(�)·dim �are integers.6.2. Re�ned Artin/Swan ondutors. It is a natural question to askwhether one an obtain information about the graded piees of the rami�-ation �ltrations. The following theorem is proved with some restritions in[AS03, Sa09, X12a℄ and, in full generality, in [Sa12℄.6.2.1. Theorem. The graded piees graG•nlog := Ganlog=Ga+nlog (a > 1) andgraG•log := Galog=Ga+log (a > 0) are abelian groups of exponent p. Moreover,there is a natural injetive homomorphismrsw : Hom(graG•log;Fp) ,→ 
1
OK (log)⊗OK m

−aKalg=m(−a)+Kalg ; a ∈ Q>0;where 
1
OK (log) := 
1

OK + OK d�K�K , m
−aKalg := {x ∈ Kalg | vK(x) > −a}, and

m
(−a)+Kalg := {x ∈ Kalg | vK(x) > −a}.Following Kato, the map above is alled the re�ned Swan ondutor homo-morphism. When K is of equal harateristi, there is an analogous naturalinjetive homomorphism, alled the re�ned Artin ondutor homomorphismrar : Hom(graG•nlog;Fp) ,→ 
1

OK ⊗OK m
−aKalg=m(−a)+Kalg ; a ∈ Q>1:See [X12b℄ for more details. The analogous re�ned Artin ondutor homomor-phism is also expeted in the mixed harateristi ase, using a variant of theargument of [Sa12℄.



26 L. XIAO, I. ZHUKOVWhen K is �nite and a a positive integer, the rsw map is ompatible withthe natural homomorphism in loal lass �eld theory in the following way:Hom((Gab)a=(Gab)a+;Fp) //LCFT
��

Hom(graG•log;Fp)rsw
��Hom(Ua;K=Ua+1;K ;Fp) log∨

// 
1
OK (log)⊗OK m

−aKalg=m(−a)+KalgwhereGab denotes the abelianized Galois group with the indued �ltration, theleft vertial map is the isomorphism from the loal lass �eld theory, and themap log∨ is haraterized below. For a homomorphism � : Ua;K=Ua+1;K → Fp,its image log∨(�) is the element w��−aK d�K�K for w� ∈ K suh that�(1 + x�aK) = trK=Fp(xw�):6.2.2. Example. Continuing with the setup in Example 6.1.1, we �x a gen-erator z. Fixing the isomorphism K ∼= K((�)), we have
1
OK ⊗OK K ∼= 
1K ⊕Kd� and 
1

OK (log)⊗OK K ∼= 
1K ⊕Kd�� :Let d�a be the usual di�erential of �a in 
1K ; it is zero if and only if �a is a pthpower inK. We an also view this element in 
1
OK⊗OKK and 
1

OK (log)⊗OKKusing the diret sum deomposition above.There is a natural isomorphism � : Gal(L=K)→Fp given by � 7→�(z)−z∈Fp.This � indues a homomorphism from grbnlog(L=K)G•K;nlog or grblog(L=K)G•K;logto Fp, whih we still denote by �. Then the images of � under the re�ned Artinand Swan ondutor homomorphisms are as follows.In ase (1), rar(�) = �−n−1nad� and rsw(�) = �−n(nad�� + d�a).In ase (2), rar(�) = �−nd�a and rsw(�) = �−nd�a. (They are not literallythe same beause they live in di�erent spaes.)One an hek that the re�ned Swan and Artin ondutors do not dependon the hoie of z.6.2.3. Question. When K is perfet, one an hek that the re�ned Swanondutor homomorphism is in fat an isomorphism. (This is a folklore result,and, to our best knowledge, it has not appeared in the literature.) When Kis not perfet, is the re�ned Swan ondutor homomorphism still an isomor-phism? What about the analogous re�ned Artin ondutor homomorphism?This appears to be a very deep question regarding the struture of the Galoisgroup GK .



RAMIFICATION OF HIGHER LOCAL FIELDS 276.3. Multi-index �ltration for higher dimensional �elds. Using there�ned Swan ondutor, one an naturally assoiate a multi-index (upper)�ltration for an m-CDVF K as follows. We will only treat the ase with loga-rithmi rami�ation �ltration and when the last residue �eld k0 is perfet tosimplify the notation; one an easily modify the onstrution to adapt to thegeneral ase and to the non-logarithmi ase.Let K be an m-CDVF with the �rst residue �eld km−1. Assume the lastresidue �eld k0 is perfet. We �x a system of loal parameters t1; : : : ; tm. Inthis ase, we have 
1
OK (log)⊗OK km−1 = m⊕i=1 km−1 dtiti :For im ∈ Q>0 and for � = ∑mi=1 �i dtiti ∈ 
1

OK (log)⊗OK t−imm kalgm−1, we setvlog(�) = min{v(�1); : : : ;v(�m)}:This gives a multi-index valuation on 
1
OK (log)⊗OK t−imm kalgm−1.We put Qm>0 = {i ∈ Qm | im > 0}. For i = (i1; : : : ; im) ∈ Qm>0, we an de�nea �ltration on G := GK by the following haraterization:Gilog := {� ∈ Gimlog ∣∣�(�) = 0 for all � : grimG•log → Fpsuh that vlog(rsw(�)) > −i}:6.3.1. Question. When K has �nite last residue �eld, does this multi-index�ltration on GabK agree with the one de�ned by (12) (with l = 1), whih usesthe Milnor K-group Ktopm K? This amounts to omparing the re�ned Swanondutor homomorphism with the one de�ned by Kato for haraters of GabK .The omparison is expeted by experts. In the equal harateristi ase, this isproved in [AS09℄ and also appears impliitly in Chiarellotto and Pulita [ChP℄.But in the mixed harateristi, to our best knowledge, it has not appeared inthe literature.6.4. Constrution of the �ltration d'apr�es Abbes and T. Saito. Nowwe proeed to desribe the onstrution of the upper rami�ation �ltrationsin the general ase developed by Abbes and T. Saito [AS02℄.Abbes and T. Saito made use of rigid analyti spaes. (We refer to [BGR℄for basis of rigid analyti spaes.) Their onstrution is motivated by thefollowing ruial but easy proposition in the ase of perfet residue �eld.6.4.1. Proposition. Let K be a omplete disrete valuation �eld with perfetresidue �eld. Let L be a �nite Galois extension of K with Galois group GL=K .We know that OL is generated as an OK-algebra by one element x. Let P (u)denote the minimal polynomial of x.



28 L. XIAO, I. ZHUKOV(i) Let b(L=K) be the highest rami�ation break as de�ned just before Examp-le 1.1.1. We assume that L=K is not unrami�ed so that b(L=K) > 0. Thenb(L=K) = 1e(L=K)( ∑�∈GL=K ; � 6=1 vL(�(x) − x) + max�∈GL=K ; � 6=1 vL(�(x)− x)):(ii) Consider the rigid analyti spae for eah positive rational number a:Xa = {u ∈ Kalg : |u| 6 1; |P (u)| 6 |�K |a}:The spae Xa has [L : K℄ geometri onneted omponents if and only ifa > b(L=K).Proof. The �rst statement is straightforward if one unwinds the de�nition ofthe upper rami�ation �ltration.A rigorous proof of (ii) an be found in [AS02, Lemma 6.6℄. We will give arough idea of why this is true. The piture here is that, if a is very large, weon�ne u in some very small neighborhoods of the roots of P (u) = 0, or equiv-alently the onjugates of x. The rigid spae Xa is expeted to be geometriallya disjoint union of very small disks entered at eah of the onjugates of x.In other words, Xa should have [L : K℄ geometri onneted omponents. Inontrast, when a→ 0+, the ondition |P (u)| < |�K |a is signi�antly weakened,and Xa is almost the whole disk |u| 6 1.When the rational number a dereases from a big starting value, the disksgrow larger. Consider the �rst moment suh that some of the [L : K℄ diskslash together, and the number of geometri onneted omponents dereases.We need to show that the rational number a at this moment is exatly thehighest rami�ation break b(L=K). Indeed, the ut-o� ondition is obviously
|u − x| < min�∈GL=K ;� 6=1 |�(x) − x| (or with a onjugate of x in plae of x).This implies that |u− �(x)| = |�(x) − x| for � 6= 1. Thus

|P (u)| = ∏�∈GL=K |u− �(x)| = |u− x| ∏�∈GL=K |�(x)− x| < |�K |b(L=K):In fat, this explanation an be turned into a omplete proof if it is arguedmore arefully. �Imitating this desription in the general ase, Abbes and T. Saito gave thefollowing onstrution. Let K be a omplete disrete valuation �eld and La �nite Galois extension of K. Suppose that OL is generated by x1; : : : ; xras an OK-algebra. Then we may write OL as the quotient OK [u1; : : : ; ur℄=(f1; : : : ; fs) ≃ OL, where the isomorphism sends ui to xi, and {f1; : : : ; fs} issome set of generators of the ideal. For a positive rational number a, onsider



RAMIFICATION OF HIGHER LOCAL FIELDS 29the following rigid analyti spaeXaL=K := {u = (u1; : : : ; ur) ∈ (Kalg)r : |u1| 6 1; : : : ; |ur| 6 1;
|f1(u)| 6 |�K |a; : : : ; |fs(u)| 6 |�K |a }:Put G = GK for simpliity. Inspired by Prop. 6.4.1, we want to de�ne the(upper) rami�ation �ltration Gbnlog of G so that XaL=K has [L : K℄ geometrionneted omponents if and only if a > bnlog(L=K). It is not diÆult to seethat the spae XaL=K does not depend on the hoie of fi's, and the set ofgeometri onneted omponents �geom0 (XaL=K) does not depend on the hoieof ui's (beause adding a new generator is equivalent to hanging XaL=K to a�ber bundle over XaL=K whose �bers are disks). Thus, our onstrution is wellde�ned, depending only on L.Abbes and T. Saito [AS02℄ prove the existene of suh rami�ation �ltra-tion using ertain abstrat framework of \Galois funtor" by studying funtorsfor all rational a that take every �nite Galois extension L of K to the set ofgeometri onneted omponents �geom0 (XaL=K). They all this �ltration thenon-logarithmi rami�ation �ltration Ganlog for a ∈ Q>0. They also give a log-arithmi variant of the onstrution whih de�nes the logarithmi rami�ation�ltration Galog for a ∈ Q>0. For details, we refer to [AS02℄. For later referenewhen omparing di�erent de�nitions of the �ltrations, we will refer to thesetwo �ltrations as the Abbes{Saito �ltrations.The following omparison theorem is proved partially in [ChP℄ and in fullin [AS09℄.6.4.2. Theorem. Kato �ltration on Gab agrees with the �ltration induedfrom the Abbes{Saito non-logarithmi �ltration on G = GK. Moreover, there�ned Swan ondutor de�ned in [Ka89℄ is ompatible with the re�ned Swanondutor homomorphism de�ned in Theorem 6.2.1.We also mention that Abbes{Saito's onstrution an be applied to �niteat group shemes over OK and it de�nes a rami�ation �ltration on the groupshemes. For progress along this line, see [AM, Ha12, Ha12+℄. This result maybe used to prove the existene of anonial subgroups for a p-divisible groupwith small degree; see [Ti℄.6.5. Constrution of the �ltrations by p-adi di�erential equations.Another useful equivalent de�nition of the rami�ation �ltration is based onthe theory of p-adi di�erential equations.We �rst onsider the ase when K = K((�)) is of equal harateristi andK is perfet. Put F =W (K)[1p ℄. Consider the following bounded Robba ring,



30 L. XIAO, I. ZHUKOVfor r ∈ (0; 1) ∩ pQ:
Rrbdd := { ∑n∈Z

anT n∣∣∣∣ an ∈ F; |ai| is bounded, and limi→−∞ |ai| · ri = 0}:It is the ring of analyti funtions on the annulus r 6 |T | < 1 whih takebounded values.Let V be an irreduible p-adi representation of G = GK with �nite im-age. The theory of Fontaine (see, e.g., [Ke05, Setion 4℄) assoiates V with adi�erential module over Rrbdd for some positive rational number r suÆientlylose to 0, that is a �nite free module F = FV over Rrbdd equipped with aonnetion
∇ : F → F ⊗Rrbdd 
1

Rrbdd=F :This is equivalent to giving a derivation � = ddT on F (satisfying Leibniz rule).This onstrution gives the aess to the full power of the theory of p-adidi�erential equations in the study of the rami�ation of G. For r′ ∈ pQ withr′ ∈ [r; 1), we use F (T )(r′) to denote the ompletion of F (T ) with respet tothe r′-Gauss norm, that is the norm extending the following norm | · |(r′) onF [T ℄: ∣∣
∑n>0 anT n∣∣(r′) = maxn>0 {|an|r′n}:We pik a norm | · |F ;(r′) on F (r′) := F ⊗Rrbdd F (T )(r′) and onsider the spetralnorm
|�|sp;F ;(r′) := limn→∞ |�n|1=nF ;(r′);where |�n|F ;(r′) is the operator norm of �n. The spetral norm does not dependon the hosen norm | · |F ;(r′) on F (r′). This is one of the key invariants of ap-adi di�erential equation. It was explained by Kedlaya in [Ke05℄ (based onthe work of Christol{Mebkhout, Crew, Matsuda, Tsuzuki) that the highestrami�ation break b(V ) has the following haraterization by spetral norms:for r′ suÆiently lose to 1−; |�|sp;F ;(r′) = p−1=(p−1) · (r′)−b(V )−1:A generalization of this approah without the perfetness of K is introduedby Kedlaya in [Ke07℄. Assume that K has a �nite p-basis (as the general aseredues to this ase). The onstrution works formally the same exept thefollowing hanges:

• The �eld F is taken to be the fration �eld of a Cohen ring of K; herethe Cohen ring is an absolutely unrami�ed omplete disrete valuationring with residue �eldK; we refer to [Wh℄ for a funtorial onstrutionof Cohen rings.
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• We have the derivation �0 = ddT as well as other derivations �1; : : : ; �noming from a hosen p-basis of K. Using this, Kedlaya de�nes the log-arithmi di�erential rami�ation �ltration suh that for r′ suÆientlylose to 1−,max{

|�0|sp;F ;(r′) · r′; |�1|sp;F ;(r′); : : : ; |�n|sp;F ;(r′)} = p−1=(p−1) · (r′)−blog(V );(13)where, as before, blog(V ) is the highest rami�ation break de�ned bythe logarithmi di�erential rami�ation �ltration.A di�erent normalization in the above formula by removing the fator r′ inthe �rst term of (13) gives rise to the di�erential non-logarithmi rami�ation�ltration.The di�erential rami�ation �ltrations enjoy the following properties.(1) Kedlaya [Ke07℄ proves the Hasse{Arf property (as in Theorem 6.1.2),using the integrality of Newton polygons. (One an alternatively de-due this by reduing to the perfet residue �eld ase.)(2) It is proved in [X10℄ that Kedlaya's di�erential rami�ation �ltrationagrees with Abbes-Saito �ltration; this then proves Theorem 6.1.2 inthe equal harateristi by transferring the Hasse{Arf property throughthe omparison. Same result for one-dimensional representations waspriorly obtained by Chiarellotto and Pulita [ChP℄.(3) In the equal harateristi ase, [X12b℄ realizes the re�ned Swan on-dutor homomorphism using p-adi di�erential modules; this is re-lated to the eigenvalues of the matries for the di�erential operators�0; : : : ; �n, ating on an appropriate basis of F . [X12b℄ further relatesthe re�ned Swan ondutor homomorphism to the variation of Swanondutor (see Subsetion 10.2).(4) When K is of mixed harateristi under some mild ondition, it isproved in [X12a℄ that one an \fake" the Robba ring onstrution aboveand apply reent results [Ke10a, KeX℄ on p-adi di�erential equationsto dedue the Hasse{Arf theorem.6.5.1. Question. Can we realize the re�ned Swan ondutor homomorphismin the mixed harateristi ase, using ertain fake Robba ring onstrution?6.6. Geometri onstrution based on Abbes{Saito's original de�ni-tion. Soon after the introdution of Abbes{Saito �ltrations, Abbes and Saitogave the following geometri reinterpretation of the de�nition, whih aims ata more global appliation.To start, we �rst assume that K is of equal harateristi and satis�es thefollowing ondition:



32 L. XIAO, I. ZHUKOV(Geom) There exist a smooth sheme X over a �eld k and an irreduibledivisor D smooth over k with the generi point �, suh that K is isomorphito the ompletion of k(X) with respet to the valuation given by �.Properties for a general equal harateristi �eld K may be redued to thease with this ondition by taking ertain limit.Now, given a �nite dimensional irreduible l-adi representation � of GK ,we may realize it as an l-adi sheaf F = F� over U := X\D, possibly aftershrinking X. Using vanishing yles, T. Saito [Sa09℄ gives a onstrution thatan detet the highest logarithmi rami�ation break b := blog(�), whih wereview here.Let ID denote the ideal sheaf for the losed immersionD ⊂ X. Let (X×X)′be the blow-up of X ×X along D×D. Let (X ×X)∼ denote the omplementof the proper transform of (X × D) ∪ (D × X). Let ~u : (X × X)∼ → Xdenote the natural projetion to the �rst fator. The diagonal embeddingU → U×U ⊂ (X×X)∼ extends to a natural embedding ~Æ : X → (X×X)∼. Let
JX denote the ideal sheaf for this losed immersion. Let ~j : U×U → (X×X)∼denote the natural inlusion.For a ∈ Q>0, we use (X × X)(a) denote the normalization of the shemeassoiated to the quasi-oherent sub-O(X×X)∼ -modules

∑n∈N

~u∗(OX(⌊na⌋D)) · J nX ⊂ ~j∗OU×U : (Here, ⌊·⌋ is the oor funtion:)When a is a positive integer, this is one of the open harts for the blow-up of(X ×X)∼ along the ideal sheaf ~u∗(ID)a + JX .We use the following notation for morphisms:U j
//Æ

��

XÆ(a)
��U × U j(a)

// (X ×X)(a)Put H := Hom(pr∗2F ;pr∗1F). T. Saito [Sa09℄ proves that6.6.1. Proposition. The highest log rami�ation break blog(�) 6 a if and onlyif the base hange map Æ(a)∗j(a)∗ H → j∗End(F)is an isomorphism at the generi point � of D.When the ondition of the proposition is satis�ed, the restrition of j(a)∗ Hon the omplement (X ×X)(a)\(U ×U) is a diret sum of the Artin{Shreier



RAMIFICATION OF HIGHER LOCAL FIELDS 33sheaves de�ned by ertain linear forms. These linear forms give rise to there�ned Swan ondutor homomorphism. See [Sa09℄ for more details.When the �eld K is of mixed harateristi, T. Saito [Sa12℄ imitates theequal harateristi onstrution to make sense of X ×k X using in�nitesimaldeformations. It would be interesting to see if one an put T. Saito's onstru-tion in a more global setting for omplete regular rings of mixed harateristi,and obtain global results similar to those in [Sa09℄.6.7. Alternative onstrutions of upper �ltrations. We now explainsome other onstrutions of upper rami�ation �ltrations.Borger [Bo04, Bo02℄ onstruts a non-logarithmi rami�ation �ltration us-ing a \generi residual perfetion" proess. His result is based on the followingobservation: taking OK = Fp(x)[[�℄℄ as an example, a na��ve idea would be toredue the de�nition of rami�ation �ltrations to the ase of perfet residue�eld, by adjoining p∞-roots of x. Note that x should be thought of as a liftof the x of the residue �eld. But there is no anonial suh lift, as one ouldhoose, for example, x+ � instead and adjoin all p∞-roots of x+ �. Borger'sidea is to introdue an indeterminate u1 and onsider Fp(x; u1)[[�℄℄; he thenadjoins all p∞-roots of x+u1�. Next, he has to deal with p-power roots of u1.For this, he adjoins another indeterminate u2 and all p∞-roots of u1 + u2�.Continuing this proess and \taking limit" gives a \generi perfetion of OK".To present this observation systematially, Borger showed that there is amoduli spae Spf(Au) that parameterizes the ways of modifying OK so thatits residue �eld is perfet. In the example above,Au = Fp(x)[u1; u2; : : : ℄[[�℄℄[(x + u1�)1=p∞ ; (u1 + u2�)1=p∞ ; : : : ℄:Let Ag denote the the ompletion of Au at the generi point of its speial �ber.Then Q(Ag) is a omplete disrete valuation �eld with perfet residue �eld.We may then use the natural map GK → GQ(Ag) to de�ne an (upper) ram-i�ation �ltration on GK as the preimage of the rami�ation �ltration on thelatter group. Borger [Bo04℄ proves that the Artin ondutor given by his non-logarithmi rami�ation �ltration is ompatible with the \non-logarithmi"(Artin-like) version of Kato ondutor. It is later proved in [X10℄ that, whenK is of equal harateristi, Borger's (non-logarithmi) �ltration agrees withAbbes-Saito non-logarithmi �ltration. In the mixed harateristi ase, a sim-ilar argument used in [X10℄ relates Abbes{Saito non-logarithmi �ltration witha variant of Borger's �ltration (see [X12a, Remark 3.2.14℄). It would be inter-esting to see if the two �ltrations are exatly the same.Boltje, Cram and Snaith (see [BCS℄, [Sn, 6.3℄) de�ne a ondutor in thegeneral ase by means of expliit Brauer indution. This results in a ondutorompatible with Swan ondutor and Kato{Swan ondutor in the ases where



34 L. XIAO, I. ZHUKOVthose are de�ned. As of yet, we are not aware of any attempt to ompare theapproah of Boltje{Cram{Snaith with other onstrutions mentioned above.One more approah is initiated in [Z13, Z14℄. It is based on onsiderationof omposites of a given �nite extension with various (in�nite) elementaryabelian extensions.6.8. A generalization of the theorem of Deligne. As it was disussed inSubsetion 3.10, one expets to be able to assoiate quotient of Galois groupsto trunated disrete valuation rings. More onretely, onsider two ompletedisrete valuation �elds K and K ′ and assume that there exists b ∈ N suhthat there is an isomorphism OK=�bKOK ≃ OK′=�bK′OK′ as rings. Unlike inSubsetion 3.10, we do not assume that the residue �eld K = K ′ is perfet.6.8.1. Question. Does this isomorphism of rings still imply thatGK=GbK;nlog ∼= GK′=GbK′;nlog and GK=GbK;log ∼= GK′=GbK′;log?Are these isomorphisms of quotient groups anonial? Moreover, are they om-patible with the re�ned Swan{Artin ondutor homomorphisms?In the non-logarithmi ase, it appears that Hiranouhi and Taguhi [HT℄have started a projet towards proving the isomorphism of quotients of Galoisgroups. See also the survey paper [Hi℄.6.9. Vetor bundles with irregular singularities. It is quite well knownthat there is a strong analogy between representations of GK (when K isperfet) and di�erential modules over C((T )), that is �nite dimensional vetorspaes V over C((T )) equipped with a derivation � = ddT (i.e. �(av) = �(a)v+a�(v) for a ∈ C((T )) and v ∈ V ). Suh a module is alled regular if T�preserves a C[[T ℄℄-lattie � of V . For P ∈ C((T )), we an de�ne a rank onedi�erential module E(P ) = C((T )) · e suh that �(e) = Pe.The Turrittin{Levelt{Hukuhara Theorem (see, e.g., [Ke10a, Setion 7.5℄)says that there exists n ∈ N suh that we have a deompositionV ⊗C((T )) C((T 1=n)) ∼= ⊕ri=1Vi;where eah Vi is of the form Vi = E(Pi) ⊗ Ri for an element Pi ∈ C((T 1=n))and a regular module Ri over C((T 1=n)).The analogous invariant of rami�ation break is just max{0;−vC((T ))(Pi)}.We de�ne the irregularity of V to beIrr(V ) := r∑i=1 dimVi ·max{0;−vC((T ))(Pi)}:



RAMIFICATION OF HIGHER LOCAL FIELDS 35We an give an interpretation of this invariant in terms of the spetral normsof the di�erential operators �. For details, see [Ke10a, X12b℄.In the general ase when K = K((T )) with K of harateristi zero, theremight be additional derivations �1; : : : ; �n on K. For example, when K =
C(x; y), we may onsider the derivations �1 = ddx and �2 = ddy . We onsidera di�erential module V over K((T )), that is a �nite dimensional vetor spaeK((T )) equipped with ommuting ations of �0 = ddT ; �1; : : : ; �n. When V isirreduible, one an de�ne the irregularity of V by taking the maximum amongall irregularities omputed by the spetral norms of all di�erential operators.For general V , its irregularity is de�ned to be the sum of the irregularities overall Jordan{H�older onstituents. For the details, we refer to [X12b℄.Similarly, one an de�ne a re�ned irregularity as an analog of the re�nedSwan ondutor for Galois representations. This is explained in [X12b℄.

§7. Elimination theory7.1. The expetations. We see that the Kato{Swan ondutor as well asthe Abbes{Saito rami�ation �ltration work perfetly in all the situationswhere one needs the rami�ation invariants that \live downstairs", i.e., for anextension L=K, those invariants that are more losely attahed to K than toL. These inlude multiple questions related to the absolute Galois group of aomplete disrete valuation �eld, or, in algebrai geometry, to the �etale site ofan algebrai or arithmeti variety.In other words, probably we have the best possible \upper rami�ation�ltration".3 However, in general we annot reover the usual (lower) rami�a-tion �ltration from it. There are no Hasse{Herbrand funtions, and we annotwrite down any analogs with funtorial properties as in Subsetions 3.2{3.5.The reason for this is rather fundamental: any single rami�ation �ltration aswell as any theory of Swan-type ondutor desribes the rami�ation of anextension of degree p with just one number. But we saw in the example in §4that a \omprehensive" rami�ation theory should provide more informationin this ase. Indeed, in (11) we have to know not only n and N but also m.Also, we have no formula for the order of di�erent (or depth)4 in terms of theupper breaks whih would be a substitute for (10). The best possible estimatesin the ase of an n-dimensional loal �eld (with �nite last residue �eld) are3The terminology is absolutely misleading! The upper rami�ation breaks live downstairs,and the lower ones live upstairs.4The order of di�erent and the depth an be onsidered as invariants that \live in themiddle".



36 L. XIAO, I. ZHUKOVgiven by Hyodo inequalities (see [Hy, Th. (1-5), Prop. (3-4), Ex. (3-5)℄):(p− 1)∑l>1 jL=K(l)pl 6 dK(L=K) 6
p− 1p ∑l>1 jL=K(l); (14)where jL=K(l) are de�ned in (12).A possible distant goal for further investigations of rami�ation in the im-perfet residue �eld ase ould be to onstrut a ertain system of invariants�(L=K) for any �nite extension L=K whih would ompletely desribe therami�ation of L=K. This vague desire an be made more spei� by listingat least the following requirements.(1) \Na��ve" rami�ation invariants (rami�ation index, order of di�erent,genome, Artin and Swan rami�ation numbers) as well as other importantinvariants (suh as Abbes{Saito ondutor) an be expressed in terms of�(L=K).(2) Rami�ation of intermediate extensions (i.e., �(L=M) and �(M=K))an be expressed in terms of �(L=K); reasonable base hange properties inspirit of Prop. 3.3.2 are available.(3) Loal terms of appropriate global formulas an be expressed in terms of�(L=K).Of ourse, it would be nie to have more expliit set of requirements, whihould possibly take the form of a ertain \axiomati rami�ation theory".However, we have a lot to learn at phenomenologial level before this beomesfeasible.7.2. Bakground. Here we disuss a theory produing some additional ram-i�ation information that an be organized in analogs of the lower and upper�ltrations. The approah, orginated in [Ka87℄, is based on two observations.1. The Herbrand theorem (5) is true not only in the lassial ase but, moregenerally, in all the monogeni ases, i.e., whenOL = OK [x℄ for some x. Conse-quently, the rami�ation invariants of monogeni extensions, de�ned in a usualmanner, possess all the usual funtorial properties. The inverse statement isalso true; more preisely (see [Sp99, Prop. 1.5.2℄).7.2.1. Proposition. Let L=K be a �nite Galois p-extension. Then the fol-lowing properties are equivalent:(i) OL = OK [x℄ for some x;(ii) for every normal subgroup H of G the Herbrand property (5) holds;(iii) the Hilbert formula holds:vL(DL=K) = ∑� 6=1 iG(�) = ∑i>0(|Gi| − 1):



RAMIFICATION OF HIGHER LOCAL FIELDS 37In [Sp99℄ suh extensions are alled well rami�ed. There are three types ofwell rami�ed extensions.Case I. All the extensions with separable L=K .Case II. All the weakly unrami�ed extensions suh that L=K is generatedby 1 element. (In partiular, if K is a two-dimensional loal �eld, or, moregenerally, if [K : Kp℄ = p, then all weakly unrami�ed extensions of K are wellrami�ed.)Case III. Those well rami�ed extensions that belong neither to Case I norto Case II. Spriano showed that for any L=K from Case III there exists anintermediate �eld M suh that M=K is in Case I, and L=M is in Case II. Ageneral desription of Case III extensions was given in [HLF, Set. I, §18℄ and[Sp00℄.For us, the above remark on two-dimensional �elds is important.2. Let L=K be any �nite Galois extension of omplete disrete valuation�elds with imperfet residue �elds of harateristi p > 0, and let k be a on-stant sub�eld of K, i.e., a maximal omplete sub�eld of K with perfet residue�eld. (If harK = 0, suh a sub�eld is unique.) Epp's theorem on eliminationof wild rami�ation [E℄ (orretions in [P℄ and [Kuhl℄) asserts that there existsa �nite extension k′=k suh that k′L=k′K is weakly unrami�ed. The paper[KZ℄ ontains various re�ned versions of Epp's theorem, with appliations tolassi�ation of higher loal �elds.7.3. Constrution. Now we are ready to desribe the onstrution from[Z03℄ and [HLF, Set. I, §17℄. For a given omplete two-dimensional5 disretevaluation �eld K, �x a onstant sub�eld k. An extension L=K is said to beonstant if L = k′K and almost onstant, if L ⊂ k′Ku, where k′=k is a �niteextension, and Ku=K is an unrami�ed extension. We say that a �eld L isstandard if a prime element of its onstant sub�eld is also a prime elementof L. The hoie of a onstant sub�eld k in K determines a onstant sub�eldl in L whih is algebrai over k.For any �nite Galois extension L=K denote by L0 the inertia sub�eld inL=K and by L=K the maximal almost onstant subextension in L=K. Theidea is to indue:(1) the rami�ation �ltration on Gal(L=L0) by the �ltration for the orre-sponding onstants sub�elds;(2) the rami�ation �ltration on Gal(L=L) by the �ltration on an iso-morphi group Gal(k′L=k′L), where k′=k is a �nite extension that makesGal(k′L=k′L) weakly unrami�ed by Epp's theorem (and even feroious inview of the de�nition of L).5i.e. suh that [K : Kp℄ = p.



38 L. XIAO, I. ZHUKOVNamely, introdue a set
I = {−1; 0} ∪ {(; i)|i ∈ Q; i > 0} ∪ {(;∞)} ∪ {(i; i)|i ∈ Q; i > 0}with linear order

−1 < 0 < (; i) < (i; j) for any i; j;(; i) < (; j) for any i < j;(i; i) < (i; j) for any i < j.This will be the index set for lower and upper numbering of new rami�ationsubgroups.Let G = Gal(L=K). We put G−1 = G, and denote by G0 the usual inertiasubgroup in G.To introdue subgroups G(;i) = G;i, we onsider �rst the ase when L=Kis onstant and ontains no unrami�ed subextension. Then L = lK, and wehave a natural projetionp : Gal(L=K) → Gal(L=K) = Gal(l=k) = Gal(l=k)0:Then we put G;i = p−1(Gal(l=k)i). In the general ase take an unrami�ed ex-tensionK ′=K suh that K ′L=K ′ ontains no unrami�ed subextension, and themaximal almost onstant subextension in K ′L=K ′ (i.e., K ′L=K ′) is onstant.We put G;i = Gal(K ′L=K ′);i. Next,G;∞ = Gal(L=L) = G;mfor m big enough.Assume that L is standard and L=L is feroious. Let t ∈ OL, t =∈ Lp. Wede�ne G;i = {g ∈ Gal(L=L)|vK(g(t) − t) > i} (15)for all i > 0.In the general ase hoose a �nite extension l′=l suh that l′L is standardand e(l′L=l′L) = 1; this is possible by Epp's theorem. Then Gal(l′L=l′L) =Gal(L=L), and l′L=l′L is feroious. We de�neG;i = Gal(l′L=l′L);i = Gal(l′L=l′K);ifor all i > 0; these groups are independent of the hoie of l′ sine we used vK(and not vL) in (15).This gives a well-de�ned lower rami�ation �ltration on G indexed by I; onean de�ne Hasse{Herbrand funtions from I to I with usual properties and,onsequently, onstrut the upper �ltration. The ompatibility with subgroupsand fator groups mimis that of the lassial ase, and a rami�ation �ltrationfor in�nite Galois extensions is de�ned.



RAMIFICATION OF HIGHER LOCAL FIELDS 39One an note also that we obtained �ltration (on �nite Galois groups) whihfators Gi=Gi+ are abelian for i > 0 (even elementary abelian for i > 0). Thiswould not be true if we did not onsider the ontribution of -part. For a 2-dimensional loal �eld, one ould also de�ne a re�ned I2-�ltration using rank2 valuations in the i-part [Z03, §4℄.7.4. Further properties. There exists also a partial result on ompati-bility with the higher lass �eld theory. Namely, for an equal harateristi2-dimensional loal �eld K with �nite residue �eld, one an de�ne expli-itly an I2-�ltration on Ktop2 K whih oinides with the inverse image of therami�ation �ltration on Gal(Kab=K) with respet to the reiproity map�K : Ktop2 K → Gal(Kab=K), see [Z03, §6℄.It is not so easy to do the same in the mixed harateristi ase beause ofthe more ompliated Gal(Kab=K) and the presene of p-torsion elements inKtop2 K. In partiular, the following question is of interest.7.4.1. Question. What is CK = �−1K (Gal(Kab=Kab ))?By the results of Miki [Mik74℄, any extension of K with the Galois group
Zp is almost onstant. This means that K�=K, the ompositum of all Zp-extensions, is a subextension ofKab =K. On the other hand,Kab = kabKab;ur =kabKab;tr, and it is easy to see that K�Kab;tr = k�Kab;tr, where Kab;ur=K(resp. Kab;tr=K) is the maximal abelian unrami�ed (resp. tamely rami�ed)extension of K. Therefore,Gal(Kab =K�Kab;tr) = Gal(kabKab;tr=k�Kab;tr)

≃ Gal(kab=k�kab;tr)
≃ torsion subgroup in U1;kby usual loal lass �eld theory.Let TK be the topologial losure of the p-torsion subgroup in Ktop2 K.Sine there is no p-torsion elements in K�Kab;tr=K, we have �K(TK) ⊂Gal(Kab=K�Kab;tr). From the expliit desription of generators of Ktop2 K=TK(see [Z97, I08℄), it is lear that even �K(TK) = Gal(Kab=K�Kab;tr). Thismeans that CK should be a subgroup of index pm in TK , where pm is the or-der of p-torsion subgroup in k∗ (or in K∗). However, what are the generatorsof CK?The above desribed rami�ation �ltration gives a way of generalizing the\anabelian yoga" (see Subsetion 3.9) to higher loal �elds. Abrashkin [Abr02℄generalized the above onstrution from 2-dimensional ase to n-dimensionalloal �elds, introduing rami�ation theory that depends on the hoie of i-dimensional sub�elds Ki (1 6 i 6 n − 1) in the given n-dimensional loal



40 L. XIAO, I. ZHUKOV�eld, and proved a omplete analog of his 1-dimensional result (announed in[Abr02℄, full proof in the equal harateristi 2-dimensional ase in [Abr03℄).Next, Abrashkin used his generalized rami�ation theory to develop an anal-ogous funtor of �eld of norms for higher dimensional loal �elds, see [Abr07℄.Note that there exists further generalization of the �eld of norms funtor tothe ase of arbitrary imperfet residue �eld with �nite p-basis by Sholl [Sh℄;his onstrution does not use any kind of higher rami�ation theory.Despite these nie properties, the I-rami�ation theory is quite far frombeing a \Traumverzweigungstheorie". In partiular, even for an extension ofprime degree its I-rami�ation break does not determine its depth of rami�a-tion and even its genome (\W" or \F"). For example, let K = F ((t))((�)) andk = F ((�)), F being a �nite �eld. Assume that L=K orresponds to the Artin-Shreier equation xp−x = �−n+t�−pm, wherem;n are positive integers. Thenthe I-break of L=K is m for any n, whereas dK(L=K) = p−1p max{n; pm}, andL=K is wild if and only if n > pm.However, in the equal harateristi ase one an vary the onstant sub�eldk of K thus olleting more information on rami�ation. For example, if L=Kis wild of degree p with the Swan number s0, then, for some hoies of k, the
I-break of L=K is (; s) and neessarily s = s0. In this example m is not aninvariant of L=K. However, if in the example of §4 we onsider only suh kthat the I-break of K2=K is some (; s) (learly, s = N), then the I-breakof K1=K will be (i;m=p). Therefore, the knowledge of I-breaks of K1=K andK2=K for all hoies of k determines the rami�ation of K1K2=K.7.4.2. Question. Can we onstrut a powerful rami�ation theory for equalharateristi 2-dimensional �elds by varying the onstant sub�eld?7.4.3. Question. Can we use this approah even in the mixed harateristiase using trunations from [De84℄?

§8. Semi-global modelingNow we desribe one more approah to desription of rami�ation in theimperfet residue �eld ase. This approah goes bak to Deligne who sketheda proof of a Grothendiek{Ogg{Shafarevih formula for surfaes in his famousletter to Illusie [De76℄.8.1. Bakground. We reall some starting points of Deligne's program. Let
F be a loally onstant �etale Fl-sheaf of �nite rank on U , where U is theomplement to some divisor D on a smooth projetive surfae S over an alge-braially losed �eld of prime harateristi p 6= l. In order to understand therami�ation data assoiated with F at the generi point of a omponent D0



RAMIFICATION OF HIGHER LOCAL FIELDS 41of D, Deligne onsiders various regular ars C transversal to D0 and studiesthe restritions of F to these ars. It is expeted that the Swan ondutorof F|C (at the point where C meets D0) depends only on the jet of C of er-tain order r. Thus, we an onsider the Swan ondutor as a funtion on thespae T1;r of r-jets of regular ars transversal to D0; this spae has a natu-ral struture of a vetor bundle over D0. Next, this funtion is expeted tobe lower semi-ontinuous; in partiular, it should take its maximal value overertain Zariski open subset W of T1;r. The next laim is that the omplementof W has pure odimension one in T1;r, i.e., is a union of several irreduiblehypersurfaes. The further work is based on geometry of these hypersurfaesinluding intersetion theory.Some of these fats were proved in [La℄ under assumption of \absene offeroious rami�ation". This means that the loally onstant sheaf F is trivi-alized in some �nite extension of k(S) suh that all extensions of residue �eldsare separable. In partiular, the semi-ontinuity of Swan ondutor has beenproved under this assumption.Brylinski in [Br℄ onsiders a yli p-extension of the funtion �eld of a sur-fae S over a �eld of harateristi p given by theWitt vetor x = (x0; : : : ; xr−1).He assumes that the branh lous D0 is smooth at a ertain regular point Pof S and the valuations of all xi at the generi point of D0 are either posi-tive or prime to p. (This ondition implies absene of feroious rami�ation ifr = 1 but not in general.) Under this assumption he proves that, for all urvesC transversal to D0 at P , the Swan ondutors of orresponding extensionsof k(C) are equal, and their ommon value is Kato{Swan ondutor of theextension of the 2-dimensional loal �eld k(S)D0;P orresponding to x.Consider a yli extension L of degree p of k(S) as above suh that thebranh lous D0 is smooth with one omponent, and the rami�ation at thisomponent is wild. We see from the papers of Laumon and Brylinski that inthis ase for all urves C transversal to D at a �xed point, the orrespondingrami�ation numbers will be the same (and equal to the rami�ation numberof L=k(S)). However, in order to approah a more omprehensive desriptionof rami�ation in the sense of Subsetion 7.1, it appeared useful to onsiderurves whih are tangent to D0 of ertain �xed order (and smooth).8.1.1. Example. Let k be algebraially losed, har k = 2, S = A2k withoordinates t; u, S′ the normalization of S in the Artin{Shreier extensionL�=k(t; u) given by x2 − x = t−2n+1(1 + �u);where � ∈ k. Introduing t1 = tnx, we see that t1 is integral over k[t; u℄ andS′0 = Spek[t; u; t1℄ is regular, whene S′ = S′0. Let O′ be the losed point ofS′ above the origin O. (It is unique sine O belongs to the branh lous of



42 L. XIAO, I. ZHUKOVnormalization morphism.) Replaing S and S′ with the spetra of ompletedloal rings at O and O′ respetively, and introduing t0 = t(1+�u), we arriveat the homomorphism ' : k[[t0; u℄℄ → k[[t1; u℄℄ given by'(t0) = t21 + t2n+11 + terms of higher order:Notie that the branh lous of ' is determined by the prime ideal (t0) ofk[[t0; u℄℄. Consider a family of urves C� on Spek[[t0; u℄℄ with the equationst0 = u2 + �u3 + u5; � ∈ k;and denote by C ′� their pullbaks in Spek[[t1; u℄℄. It is not diÆult to alulatethat s(k(C ′�)=k(C�)) = {4n− 3; � 6= 0;4n− 5; � = 0;(assuming n > 2). Moreover, let C be an arbitrary regular urve on Spe k[[t0; u℄℄whih is simply tangent to the branh divisor, i.e., with an equationt0 = �2u2 + �3u3 + : : : ;where �2 6= 0, and let C ′ be its pullbak. Then C ′ is irreduible; we haves(k(C ′)=k(C)) = 4n − 3 if �3 6= 0, and s(k(C ′)=k(C)) < 4n − 3 if �3 = 0(\exeptional hypersurfae"). Note that if C is determined by an equationt = �2u2 + �3u3 + : : :in the original oordinates t; u, then �3 = �3 + ��2. This means that theequation of the \exeptional hypersurfae" H� is �3 = ��2, and thus H�\detets the �".8.2. Semi-global models. Deligne's program is intended to ompute Euler{Poinar�e harateristi of an �etale sheaf on a surfae or, more generally, todesribe rami�ation of a �nite morphism of algebrai or arithmeti surfaes.However, we an try to use this approah as a soure of rih informationabout rami�ation of extensions of 2-dimensional loal �elds by onstrutinggeometri \models" for given extensions.Namely, let h : A→ B be a �nite k-homomorphism of 2-dimensional regularloal rings with perfet oeÆient sub�eld k of harateristi p > 0. Let p be aprime ideal of height 1 in B suh that B=p and A=h−1(p) are regular. We shallsay that (h, p) is a model for a �nite extension of 2-dimensional loal �eldsL=K, if there exists an isomorphism i of 2-dimensional loal �elds Q̂(B)
p
≃ Lmapping Q̂(A)h−1(p) onto K.We suggest to study rami�ation in L=K by onsidering various regularurves on SpeA and their pullbaks in SpeB. For eah suh urve C and



RAMIFICATION OF HIGHER LOCAL FIELDS 43a omponent of its pullbak C ′, the �eld extension k(C ′)=k(C) is a �niteextension of 1-dimensional loal �elds inheriting information on L=K.Of ourse, sine we are interested only in \rami�ation in odimension 1",we have a huge freedom in hoosing models for given L=K. (We an makeblow-ups preserving L=K et.) We hope to desribe a lass of morphisms hhaving as simple struture as possible to make the study of k(C ′)=k(C) easybut still providing models for all L=K of interest.For example, in [Z10℄ we proposed to study pairs (h, p) suh that for somehoie of regular loal parameters t; u in A and x; y in B with p = (x) andh−1(p) = (t) the following onditions are satis�ed:(i) h(t) = Æ · xex ,(ii) h(u) ≡ " · yey mod x,(iii) J(t; u) = ∣∣∣∣∣

�h(t)�x �h(t)�y�h(u)�x �h(u)�y ∣∣∣∣∣ =  · xM , where ex, ey are positive integers, eybeing a nonnegative power of p, M is a nonnegative integer; Æ; ";  ∈ B∗.Suh morphisms appeared in [CuP℄ in the ontext of resolution of a �-nite morphism between regular algebrai surfaes over a �eld of harateristip > 0.It was proved in [Z10, Prop. 2.4℄ that an extension of 2-dimensional loal�elds L=K has a model with properties (i), (ii), if the following 2 onditionsare satis�ed.(1) fs(L=K) = 1.(2) Let (eij)i;j=1;2 be the matrix rami�ation index for some hoie of rank2 valuations vL and vK , i.e., vL|K = vK · (eij). Then gd(e11; e22)|e12.Moreover, in this ase we have ew(L=K) = ex and fi(L=K) = ey, see [Z10,Prop. 2.2℄.8.3. Initial questions. Let (h, p) be as in Subsetion 8.2; denote by D0 theprime divisor of X = SpeA orresponding to h−1(p). Fix a positive integerr and onsider the set Tr of all regular ars C on X suh that (C:D0) = r.Assume the above ondition (iii); then C is not a omponent of the branhdivisor, and h∗C = C ′1+ · · ·+C ′n, where C ′1; : : : ; C ′n are distint prime divisorsof SpeB, and n = n(C) is a positive integer. For eah i (1 6 i 6 n), we havean extension of omplete disrete valuation �elds with perfet residue �eldsk(C ′i)=k(C). Our plan is to study the rami�ation invariants of the extensionsk(C ′i)=k(C) as funtions on the set Tr.First of all, we have to hek that n(C) and all the rami�ation invariantsdepend only on the jet of C of ertain order R = R(r). Having this proved,we an onsider n(C) and rami�ation invariants as funtions on the set Tr;Rof R-jets of ars from Tr.



44 L. XIAO, I. ZHUKOVEah Tr;R has a struture of an aÆne variety over k. Indeed, let t; u beloal parameters of A suh that (t) = h−1(p). Then, in view of Weierstra�preparation theorem, eah urve from Tr has a unique equation of the formf = {
−u+ �1t+ �2t2 + : : : ; r = 1;
−t+ �rur + �r+1ur+1 + : : : ; r > 1;where �i and �i are any elements of k with an only restrition �r 6= 0. If r > 1,Tr;R an be identi�ed with {(�r; : : : ; �R) ∈ AR−r+1k |�r 6= 0}; if r = 1, Tr;R anbe identi�ed with ARk ; see more details in [Z02a℄.Next, we would like to hek that ertain funtions of these rami�ationinvariants are semi-ontinuous on Tr;R with respet to orresponding Zariskitopology. (These funtions are redued to ondutors or the order of di�erent ifs = 1, and the preise de�nitions in the general ase are still to be understood.)Some results in this diretion are inluded into the next setion.

§9. Some results on semi-ontinuity9.1. Artin{Shreier extensions. The paper [Z02a℄ is devoted to the studyof questions raised in Subsetion 8.3 in the ase of Artin{Shreier overingsof the spetrum of a omplete 2-dimensional regular loal ring (of harater-isti p > 0). Suh overings an serve as semi-global models of Artin{Shreierextensions of 2-dimensional loal �elds. However, the setting in this work issomewhat more general: the morphisms with 2 (transversal) omponents inthe branh lous are also inluded into onsideration.More preisely, let A be a regular two-dimensional loal ring (not neessarilyomplete), harA = p > 0, K = Q(A), m the maximal ideal of A, and k theresidue �eld whih is assumed to be algebraially losed. For a prime ideal pof height 1, denote by Fp the orresponding prime divisor of SpeA. For anytwo distint prime divisors Fp, Fp′ we de�ne their intersetion number as(Fp:Fp′) = dimk A=(p+ p
′);by linearity this de�nition an be extended to any two divisors C;D with noommon omponents.Let L=K be a yli extension of degree p, and let B be the integral losureof A in L. For the sake of simpliity of statements we assume here that thebranh divisor of B=A onsists of one smooth omponent Fp1 ; for the ase oftwo transversal omponents, see [Z02a℄. Denote by UA the set of prime idealsof height 1 of A other than p1. For p ∈ UA, denote by q any prime ideal of B



RAMIFICATION OF HIGHER LOCAL FIELDS 45over p. Denotesp(L=K) = {s(L(q)=K(p)); e(L(q)=K(p)) = p;0; otherwise;where K(p) is the fration �eld of A=p, and L(q) is the fration �eld of B=q.Introdue Tr and Tr;n as in Subsetion 8.3 and identify p with the ar Fp.9.1.1. Proposition. (Existene of a uniform suÆient jet order, [Z02a, The-orem 2.1℄.) For any r > 1 there exists R suh that if p; p′ ∈ Tr and (Fp:Fp′) >R + 1, then sp(L=K) = sp′(L=K). Let su1;r(L=K) be the minimal suh R.Then there exists N > 1 suh that su1;r(L=K) < Nr for any r.9.1.2. Remark. There was a mistake in the proof of \suÆient jet order on-jeture" in [Z02b℄. The orret part of this preprint on the bounded growth ofurve singularity invariants along ertain tame and wild morphisms of surfaeswas published later as [Z06℄.Next, introdue Zariski topology in all Tr;n as in Subsetion 8.3. Then thefollowing statements hold.9.1.3. Proposition. (Semi-ontinuity of a break, [Z02a, Theorems 2.2{2.4℄.)1. Let n > su1;r(L=K). Denote by Jn(p) the n-jet of the ar Fp. Then forany s > 0 the set
{Jn(p)|p ∈ Tr; sp(L=K) 6 s}is a losed subset in Tr;n.2. The supremum sr(L=K) = sup{sp(L=K)|p ∈ Tr}is �nite.3. Assume in addition that A is a G-ring. Then the sequene (sr(L=K)=r)ris onvergent.9.2. Extensions of prime degree. The paper [Fa℄ is devoted to morphismsh : A→ B of Subsetion 8.3 with properties (i), (ii) and (iii) without assump-tion that B is a Galois algebra over A.Let Tr, Tr;R, C, n(C), C ′i have the same meaning as in Subsetion 8.3.Under the assumption n(C) = 1, denote by sC the only rami�ation break ofk(C ′1)=k(C) as de�ned at the very end of §1. Then we have [Fa, Theorem 4℄:9.2.1. Proposition. (Existene of a uniform suÆient jet order.) For anyr > 1 there exists R suh that if C; ~C ∈ Tr and (C: ~C) > R + 1, then sC =s ~C. Let su1;r(h) be the minimal suh R. Then there exists N > 1 suh thatsu1;r(h) < Nr for any r.



46 L. XIAO, I. ZHUKOVNext, Faizov proved the following semi-ontinuity statement [Fa, Theo-rems 5 and 6℄.9.2.2. Proposition. (Semi-ontinuity of a break.) 1. Let n > su1;r(h). Thenfor any rational s > 0 the set
{Jn(C)|C ∈ Tr; sC 6 s}is a losed subset in Tr;n.2. The supremum sr(h) = sup{sC |C ∈ Tr}is �nite.The proofs are based on areful work with Hamburger{Noether algorithmfor urve C1 yielding an expliit form of a uinformizing element of k(C).9.3. Relation to singularity invariants. In the ontext of Subsetion 8.3,we onsidered regular ars on SpeA; however, the ars C ′i on SpeB are ingeneral singular, and the omplexity of singularity an reet the rami�ationdata of the morphism h; this phenomenon was �rst observed in [Z06℄. In [CZ℄we relate the semi-ontinuity property of rami�ation invariants with the semi-ontinuity of Æ-invariant in families of singular ars.Let A;B be omplete 2-dimensional regular loal rings with algebraiallylosed oeÆient sub�eld k. A �nite k-homomorphism h : A→ B will be alledunmixed if h(mA) ⊂ mB and h(mA) 6⊂ m2B . In partiular, a homomorphismwith properties (i) and (ii) is unmixed if in its de�nition either ex = 1 orey = 1.A deomposable homomorphism is by de�nition a omposition of severalunmixed homomorphisms.The following statement is proved in [CZ℄.9.3.1. Proposition. Let h : A → B be a deomposable homomorphism ofdegree m, and B its branh divisor in SpeA. Let C be a redued urve onSpeA having no ommon omponents with B; C ′ = h∗C. Let C ′1; : : : ; C ′r beall omponents of C ′; Ci = h∗C ′i, i = 1; : : : ; r; di the order of di�erent in theextension of disrete valuation �elds k(C ′i)=k(Ci). Then we have2Æ(C ′)− 2mÆ(C) = (C:B)− r∑i=1 di: (16)This immediately implies9.3.2. Corollary. Let h : A → B be a deomposable homomorphism, and Bits branh divisor in SpeA. Let C be a regular urve on SpeA whih is nota omponent of B; C ′1; : : : ; C ′r all omponents of C ′ = h∗C, i = 1; : : : ; l; di



RAMIFICATION OF HIGHER LOCAL FIELDS 47the order of di�erent in the extension of disrete valuation �elds k(C ′i)=k(C).Then1) ∑ri=1 di 6 (C:B);2) Æ(C ′) 6 12(C:B).Consider a deomposable homomorphism h : A → B and assume that thebranh divisor of h is of the form B = bD0, where D0 is a regular reduedirreduible urve on SpeA and b is a positive integer. (It is always so whenh has properties (i){(iii) from Subsetion 8.2.)9.3.3. Lemma. Let � be a positive integer. Let A be a omplete 2-dimensionalregular loal ring having a oeÆient sub�eld. Consider two urves C; ~C onSpeA suh that Æ(C) 6 �, and C; ~C have the same 2�-jet. Let C1; : : : ; Crbe all irreduible omponents of C. Then ~C also has r irreduible omponents~C1; : : : ; ~Cr with Æ( ~Ci) = Æ(Ci) and ( ~Ci: ~Cj) = (Ci:Cj) for all i; j.9.3.4. Question. Is it possible to estimate Milnor and Tjurina numbers�(C) or �(C) in terms of Æ(C)? Maybe, one ould apply formulas for �(C)from [BGM, MHW℄. If yes, this would enable us to estimate �nite determi-nay of C.Next, let Tr;R, n(C), C ′i have the same meaning as in Subsetion 8.3.9.3.5. Proposition. Let C be a regular urve on SpeA with (C:D0) = r <
∞. Then, for the urve h∗C, the number of omponents, their Æ-invariantsand intersetion numbers depend only on the jet of C in Tr;br.Proof. Let C and ~C have the same br-jet. Then obviously h∗C and h∗ ~C alsohave the same br-jet. In view of Corollary 9.3.2, Æ(h∗C) 6 br=2. It remains toapply Lemma 9.3.3 with � = [br=2℄. �9.3.6. Corollary. For C as in the above proposition, let di be the order of dif-ferent in the extension of disrete valuation �elds k(C ′i)=k(C), i = 1; : : : ; n(C).Then ∑ri=1 di depends only on the br-jet of C.Proof. It follows from Proposition 9.3.5 and formula (16). �Let us make the following Assumption SÆ on the semi-ontinuity of theÆ-invariant.Let A be a omplete 2-dimensional regular loal ring with algebraially losedoeÆient sub�eld k, and let U be an open subset of ANk for some positive inte-ger N . Let f∈A[X1; : : : ;XN ℄ be suh that for any losed point (a1; : : : ; aN )∈Uthe urve C(a1; : : : ; aN ) = SpeA=(f;X1 − a1; : : : ;XN − aN ) is redued. As-sume that there exists a positive integer � suh that Æ(C(a1; : : : ; aN )) 6 �for all (a1; : : : ; aN ) ∈ U . Then Æ(C(a1; : : : ; aN )) is an upper semi-ontinuousfuntion on U .



48 L. XIAO, I. ZHUKOV9.3.7. Proposition. If Assumption SÆ is satis�ed, then for any r > 1, Æ(h∗C)determines an upper semi-ontinuous funtion on Tr;br.Proof. It follows immediately from Corollary 9.3.2. �9.3.8. Question. Is it true that n(C) (the number of omponents of h∗C)determines a lower semi-ontinuous funtion on Tr;br? What an be said aboutthe generi value of n(C)?9.3.9. Corollary. For a regular urve C on SpeA with (C:D0) = r, letC ′1; : : : ; C ′n be all omponents of h∗C, n = n(C), and di the order of di�erent inthe extension of disrete valuation �elds k(C ′i)=k(C). Then ∑ni=1 di determinesa lower semi-ontinuous funtion on Tr;br, if the Assumption SÆ is satis�ed.Proof. It follows immediately from Prop.9.3.7 and 9.3.1, sine (C:B) = br. �9.3.10. Question. We suggest to say that a lower semi-ontinuous integer-valued funtion h on a variety S is purely lower semi-ontinuous if for everyN eah omponent of the losed subsetSN = {P ∈ S|h(P ) < N}has odimension 6 1 in the respetive omponent of SN+1.Is it true that ∑ni=1 di determines a purely lower semi-ontinuous funtionon Tr;br? Equivalently, is Æ(�r ; : : : ; �pr) purely upper semi-ontinuous on Tr;br?(Pure upper semi-ontinuity is de�ned similarly.)This is related to Deligne's onjeture that the loi of exeptional values oframi�ation invariants are always hypersurfaes.
§10. Algebrai-geometri onsequenes of Abbes{Saito �ltrationThe theory of Abbes{Saito rami�ation �ltrations has deep appliations inalgebrai geometry, inluding Grothendiek{Ogg{Shafarevih type formulasfor Euler harateristi of �etale sheaves. A survey of these geometri applia-tions is also given in T. Saito's ICM talk [Sa10℄. Here we prefer to disuss atthe same time the global version of three analogous objets: lisse Ql-sheaves,overonvergent F -isorystals, and loally free oherent sheaves with integrableonnetions; this way, we an ompare their similarities as well as di�erenes.10.0.1. Question. This setion an lead the reader to the following question:ould some of the results in this setion �nd an appliation to the geometriLanglands program? The authors are very interested in suh potential rela-tions.



RAMIFICATION OF HIGHER LOCAL FIELDS 4910.1. Setup. Let k be a �eld. For a smooth variety X over k, let D = ∪ri=1Dibe a divisor on X with strit simple normal rossings, where Di are irreduibleomponents. Let U = X\D denote the omplement. Suppose that we are inone of the following situations.(a) F is a lisse Ql-sheaf on U , where l is a prime number di�erent fromhar k;(b) F is an F -isorystal on U overonvergent along D, while har k =p > 0;() F is a loally free oherent sheaf on U with an integrable onnetion,while har k = 0.At the generi point �i of an irreduible omponent Di of the divisor D, onean talk about(a) the Swan ondutor Sw(F ;Di), obtained by onsidering the represen-tation Gk(X)�i → �1(U) → GL(VF ), where the latter homomorphismis the representation assoiated to the lisse sheaf F ; or(b) the (di�erential) Swan ondutor Sw(F ;Di), obtained by passing tothe generi point in the sense of Subsetion 6.5; or() the irregularity Irr(F ;Di) in the sense of Subsetion 6.9 by base hang-ing to the ompletion at �i; we rename it as the Swan ondutorSw(F ;Di).We de�ne the Euler harateristi to be �(U;F) = ∑j(−1)j dimHj?(X;F),where ? is the �etale ohomology (after base hange to kalg) in ase (a), is therigid ohomology in ase (b), and is the de Rham ohomology in ase ().When F is the trivial objet, we write �(U) for �(U;F).We list these three ases together beause most of the results on rami�ationtheory hold in a similar fashion.10.2. Results of variation of Swan ondutors. The approah we willtake is loal-to-global; building on the study of variation of Swan ondutorsloally on X, we expet a global result from the loal data at the end.We explain the main results of [KeX, Ke11a, Ke10b℄ on the variation prop-erties of Swan ondutors by means of an example. Historially, the same resultin the rank one ase was already known to Kato, as explained impliitly inhis foundational work [Ka94℄. We take X = A2 = Spek[x; y℄, D0 = Z(y)and D1 = Z(x). Let F be as in either ase onsidered in Subsetion 10.1 overU = X\(D0 ∪D1) as above. We an onsider the Swan ondutors Sw(F ;D0)and Sw(F ;D1).We may blowup X at the origin P = D0 ∩D1 to get X ′ = BlPX; let D1=2denote the exeptional divisor. Sine F is de�ned on U , we an talk about



50 L. XIAO, I. ZHUKOVthe Swan ondutor Sw(F ;D1=2) of the sheaf F along D1=2 as in Subse-tion 10.1(b). Carrying on this idea, we an ontinue to blow up X ′ along theintersetions of D1=2 with the proper transforms of D0 and D1. We use D1=3and D2=3 to denote the two exeptional divisors for this blowup. Similarly,the Swan ondutors Sw(F ;D1=3) and Sw(F ;D2=3) are then well-de�ned. Wean iterate this proess to blow up intersetions of these divisors and thenonsider the Swan ondutors along all the exeptional divisors. We label theexeptional divisors as follows: for eah pair of oprime integers (m;n) ∈ N2,there is exatly one exeptional divisor Dn=m+n suh that, for the valuation vorresponding to Dn=m+n, we have v(x) = n and v(y) = m. Along this divisor,a Swan ondutor Sw(F ;Dn=m+n) an be de�ned as in Subsetion 10.1(b).10.2.1. Proposition. The funtionnn+m 7−→
1n+mSw(F ;Dn=m+n)extends by ontinuity to a onvex pieewise linear funtion on [0; 1℄ with inte-gral slopes.This proposition is a speial ase of the results proved in [KeX, Ke11a,Ke10b℄ for a higher dimensional variety X and for an intersetion point ofsimple normal rossing divisors. (The essential part of the proof is in [KeX℄;the statements appear in [Ke11a℄ for ases (a) and (b) and in [Ke10b℄ forase ().) Moreover, the slopes of the pieewise linear funtion are related to there�ned Swan ondutor homomorphism de�ned in Subsetion 6.2; see [X12b℄for details.10.2.2. Remark. We point out a aveat: there is no analogous result ofProposition 10.2.1 for Artin ondutors, beause blowing up is log-smooth butnot smooth. So Swan ondutors are better adapted to this type of variationquestions.10.3. Approah to rami�ation theory using utting-by-urves. Itwould be interesting to larify the relation between the Abbes{Saito �ltrationat generi points (as disussed above) and the rami�ation data from utting-by-urves (as disussed in details in §9).We �rst explain the \ut-by-urve" Swan ondutors. Let Di be an irre-duible divisor of X, then one an de�ne a new Swan ondutor by takingSwurve(F ;Di) := supC (Sw(F|C ;C ∩Di)(C:Di) );where (C:Di) is the intersetion number of C with Di and the supremum istaken over all urves C that intersets with Di (not neessarily transversely).



RAMIFICATION OF HIGHER LOCAL FIELDS 51A suggestion to study Swurve appeared (in 2-dimensional ase) in [Z02b, Re-mark 2.5.3℄; a omputation in the Artin{Shreier ase was done in [Z02a℄ (seeabove Prop. 9.1.3).The natural question to ask is whether Swurve(F ;Di) is the same asSw(F ;Di) whih is de�ned using the Abbes{Saito rami�ation �ltration (asin Subsetion 10.1). This question is addressed by Barrientos [Ba℄ in ase (a)when the sheaf has rank one, whih generalizes an idea of Deligne{Esnault{Kerz [EK℄. It would be interesting to generalize this to all ases in Subse-tion 10.1 for arbitrary rank objets. We also emphasize that using urves thatare not transversal to the divisor is essential in this theory, as shown in thefollowing example.10.3.1. Example. Let X = A2 be the xy-plane over a �eld k of harateristip and let D be the divisor Z(y). Consider the Artin{Shreier sheaf F overU = X − D given by the equation zp − z = x=yp, that is the lisse sheafassoiated to a nontrivial harater of the Galois group Z=pZ of the over ofU given by this equation.Using Example 6.1.1, we see that Sw(F ;D) = p, as x is not a pth power inthe residue �eld k(x). When restrited to eah line Ca : x = a for a ∈ kalg,the Artin{Shreier equation beomes zp − z = a=yp whih is the same asz′p− z′ = a1=p=y for z′ = z−a1=p=y. So Sw(F|Ca ;D∩Ca) = 1. In other words,the generi Swan ondutor (using Abbes{Saito's �ltration) is not equal to theSwan ondutor restrited to any suh urve Ca.If instead we onsider the urve Ca;m : y = (x − a)m for a ∈ kalg andm≫ 0, the Artin{Shreier equation beomes zp − z = x=(x− a)pm. Sine theintersetion point is x = a, we use hange of variable x′ = x− a; the equationbeomes zp − z = (x′ + a)x′−pm. If we substitute z′ for z − a1=px′−m, we getz′p− z′ = x′−pm+1+ a1=px′−m. It follows that Sw(F|Ca;m ;D∩Ca;m) = pm− 1.Thus, lim supm Sw(F|Ca;m ;D ∩ Ca;m)(D:Ca;m) = p:We also point out that when m = 1, the urve y = x − a is still trans-versal to D, but Sw(F|Ca;1 ;D ∩ Ca;1) = p − 1, whih is di�erent fromSw(F|Ca ;D ∩ Ca) = 1; thus restriting to di�erent transversal urves maygive di�erent Swan ondutors. The largest Swan ondutor obtained by re-striting to transversal urves is p− 1, whih is still smaller than the \orretanswer" p, as seen at the \generi point". This is why we need to onsiderurves non-transversal to the divisor.



52 L. XIAO, I. ZHUKOV10.3.2. Question. Using the results on variation properties of Abbes{SaitoSwan ondutors (Prop. 10.2.1) and the information of re�ned Swan ondu-tors, an we say something along the line of semi-ontinuity type statementproposed by Deligne [De76℄ (and proved in [La℄ in ase of absene of feroiousrami�ation)?10.4. Towards generalized Grothendiek{Ogg{Shafarevih formulas.One of the goals of Abbes and T. Saito's projet is to generalize the Euler har-ateristi formula for l-adi sheaves. In fat, this should be appliable to allthree ases we disussed above. We will refer to suh formulas as Grothendiek{Ogg{Shafarevih type formulas (GOS type formulas for short). Under a lean-liness ondition whih we explain later, a GOS type formula is expeted totake the following form (when rankF = 1 and dimX = 2)�(F) = �(U)− r∑j=1 Swj · �(D◦j ) + r∑j1;j2=1 Swj1Swj2 · (Dj1 :Dj2); (17)where Swj is the Swan ondutor of F along Dj as in Subsetion 10.1 andD◦j = Dj − (∪j′ 6=jDj′). (Compare this with the lassial Grothendiek{Ogg{Shafarevih formula in Subsetion 3.11.) The expression of the formula be-omes more ompliated when rankF > 1.GOS type formulas are known when X is a urve. Case (a) is disussed inSubsetion 3.11. Case (b) is due to Christol, Crew, Matsuda, Mebkhout, andTsuzuki; a omplete referene with a proof is given in [Ke06, Theorem 4.3.1℄.Case () is due to Deligne and Gabber; one an �nd a proof in [Katz, Theo-rem 2.9.9℄.In [Ka94℄, Kato studied the GOS type formulas for higher dimensional va-rieties and for F of rank one. There have been some reent generalizations ofKato's work to the ase when both X and F are general. A GOS type formulafor ase (a) is onjetured in [AS11, Sa10℄ under the leanliness ondition,and is proved under additional assumptions in [Sa09℄. In ase (), a GOS typeformula under the leanliness ondition plus a very mild assumption is provedin [X12+℄, whih follows the idea of [Ka94, §1℄.We now explain the key points that enter the proof of these GOS typeformulas.First, it appears to be impossible to obtain an unonditional formula thattakes the form of (17). This is beause the rami�ation data at the generipoints of the divisors do not determine the rami�ation at the losed points.One has to impose a leanliness ondition on the objet F , whih roughly saysthat the rami�ation at all losed points onD is determined by the rami�ationdata at generi points of D. The leanliness ondition is disussed in [AS11℄



RAMIFICATION OF HIGHER LOCAL FIELDS 53for ase (a), but also note the subtlety of di�erent versions of leanliness, asdisussed in [X12+℄ for ase ().10.4.1. Question. We often enounter situations when F is not lean on X.But we expet that there exists a birational proper morphismf : (X ′;D′) → (X;D)suh that f∗F satis�es the aforementioned leanliness ondition. In ase (),this expetation is known as the Sabbah Conjeture, proved by Kedlaya [Ke10b,Ke11b℄ and Mohizuki [Mo-T℄ independently. It would be very interesting toprove this expetation in ases (a) and (b). This may be thought of as a versionof desingulization, exept that we are resolving the \singularities of a sheaf".Seond, let us assume the leanliness ondition from now on. Along the wayof proving GOS type formulas, we expet that the rami�ation data (namelythe Swan ondutors and the re�ned Swan ondutors) also provides informa-tion about the log-harateristi yle of F (as a yle in the log-otangentspae of X). There are a good surprise and a bad surprise when one tries torealize suh philosophy. The good surprise is that, unlike in the usual (non-logarithmi) harateristi yle for an algebrai D-module, where all irre-duible omponents are onormal bundles of some losed subvarieties of X(see, e.g., [HTT℄), the log-harateristi yle an ontain arbitrary subbun-dles of the log-otangent spae over some subvarieties of X.6 The expetationis that the oeÆients from the re�ned Swan ondutors de�ne the aforemen-tioned subbundles whih onstitute the log-harateristi yle. We also pointout that the Euler harateristi is only sensitive to the multipliities of thesesubbundles but not to how they are embedded in the log-tangent spae of X.The bad surprise is that the de�nition of log-harateristi yles is a bigmystery! On one hand, it seems that there has not been a suessful theoryof (log-)harateristi yles for l-adi sheaves; on the other hand, even in theases (b) and (), where a standard theory of harateristi yles is available(see [HTT℄ for ase () and [Be℄ for ase (b)), it is not entirely lear how tomake an analogous logarithmi theory. Two major diÆulties are the lak ofappropriate log-holonomiity theorem for F (whih may not even be �nitelygenerated over DlogX ) and absene of Bernstein inequality. (We refer to [X12+℄for more disussion on pathologial examples.) In ase (), the �rst author[X12+℄ developed a theory tailored for the appliation to the GOS type for-mulas. He does not know how to make analogous onstrution in ase (b).6This is related to the fat that the Poisson struture on the log-otangent spae isdegenerate.



54 L. XIAO, I. ZHUKOVThird, the Euler harateristi and the log-harateristi yles are expetedto be related. In the standard theory of algebrai D-modules and overonver-gent F -isorystals, the intersetion number of the harateristi yle with thezero setion of the otangent spae gives the Euler harateristi of F ; thisformula is known as the Kashiwara{Dubson formula. See [HTT℄ for the alge-brai D-module ase and [Be℄ for the overonvergent F -isorystal ase. Onemay hope to use a log-version of suh a formula to dedue GOS type formu-las by omputing expliitly the log-harateristi yles, at least in the aseof F -isorystals and algebrai D-modules. Unfortunately, this omes bak tothe bad surprise mentioned earlier: we do not have a satisfatory theory oflog-harateristi yles for general F , exept in ase () where a GOS typeformula is proved in [X12+℄ under a mild hypothesis.10.4.2. Remark. A very important appliation for an appropriate de�ni-tion of log-harateristi yles for overonvergent F -isorystals would be thefollowing. Kedlaya develops a trik in [Ke11a, Setion 5℄ that an \transfer"the rami�ation data of a lisse l-adi sheaf to a (virtual) overonvergent F -isorystal. Then we would get a natural de�nition of log-harateristi ylesfor lisse l-adi sheaves for free. To our knowledge, a general onstrution ofthe (log-)harateristi yles is not known for lisse l-adi sheaves. (Underthe leanliness ondition, Abbes and T. Saito [AS11℄ give a de�nition usingthe re�ned Swan ondutors, but it is unlear how to remove the leanlinesshypothesis.)10.5. A global approah by Kato{Saito. In the end, we briey mentionan approah of Kato and T. Saito, in whih they interpret the rami�ationinformation of a lisse Ql-sheaf F as yle lasses supported on the boundarydivisor D. The method is global and hene is di�erent from the view point wetook in previous subsetions. We will only summarize the gist of the idea butrefer to [KS08℄ for details.One �rst hooses a Zl-lattie F0 of F and onsider �F = F0=lF0 instead.It turns out that the (wild) rami�ation information is ompletely ontainedin the redution �F . Then there exists a �nite Galois �etale over V of U overwhih �F is trivial. Put G = Gal(V=U); the sheaf �F orresponds to an Fl-representation � �F of G. Suppose that V admits a ompati�ation Y suhthat E = Y \V is a divisor with simple normal rossings. Let f denote thenatural morphism f : Y \V → X\U . One an onsider the intersetion of thediagonal Y and the graph of g ∈ G in ertain log-produt Y ×X Y , viewedas a yle sV=U (g) on Y \V . One de�nes sV=U (id) so that ∑g∈G sV=U (g) = 0.



RAMIFICATION OF HIGHER LOCAL FIELDS 55Kato and T. Saito [KS08℄ then formally de�ne the Swan lass to beSw(F) := ∑g∈G f∗(sV=U (g))TrBr(g; � �F ) ∈ CH0(D);where TrBr is the Brauer trae. (Compare this to the de�nition of Swan har-ater in Subsetion 3.7.) The upshot of [KS08℄ is that, even if V does notadmit a good ompati�ation as above, one an use alteration to reproduethe onstrution (at the expense of passing to Chow group with rational oeÆ-ients). Moreover, the Swan lass does not depend on the hoie of the lattie
F0. Essentially by onstrution, the degree of the Swan lass measures thedi�erene �(U;F) − �(U;Ql) · rankF .10.5.1. Question. Can one prove an analogous result of Kato and T. Saitoin the ases (b) and () of Subsetion 10.1?We also mention that Abbes and T. Saito onstrut ertain ohomologylasses for lisse l-adi sheaves (under a mild hypothesis) using purely ohomo-logial method; they hek that their onstrution is onsistent with the workof Kato and T. Saito above. Reently, Kato and T. Saito [KS13℄ extendedtheir work to varieties over Qp; in this ase, the fous is no longer the Eu-ler harateristi of F , but the Swan ondutor of the ohomology of F as arepresentation of Gal(Qalgp =Qp).10.5.2. Question. It would be interesting to know if one an reprodue someof the results in this subsetion by working Zariski loally on X. Also, an werelate this to the loal approahes we disussed earlier?

§11. Misellaneous questionsHere are some questions whih are of interest for us but do not �t into othersetions.11.1. Rami�ation numbers and struture of Galois groups. Thereexists a number of results relating the struture of Galois groups with thepossible values of rami�ation invariants. Hasse{Arf theorem gives an example;another example is the following Hyodo inequality ([Hy, Lemma (4-1)℄ or,without lass �eld theory, [Z95, §1℄).11.1.1. Proposition. Let M=K be a yli extension p2, L the intermediatesub�eld. ThendK(M=L) > min ((p− 1 + p−1)dK(L=K); eK − p−1eK + p−1dK(L=K)): (18)



56 L. XIAO, I. ZHUKOV11.1.2. Question. Given a omplete disrete valuation �eld K, a word T =T1 : : : Tn in the alphabet {W;F} and an n-tuple of integers (i1; : : : ; in), doesthere exist a yli extension L=K with genome T and lower breaks (i1; : : : ; in)?The answer is known only in 2 ases.(1) The lassial ase: we only give the referene [Mik81℄ for the mixedharateristi ase. For equal harateristi ase, a related work is [Th℄.(2) Feroious extensions of 2-dimensional �elds [We℄.In general, we annot even answer the following question.11.1.3. Question. Given a omplete disrete valuation �eld K and a wordT = T1 : : : Tn in the alphabet {W;F}, does there exist a yli extension L=Kwith genome T ?If harK = p, the answer is expeted to be positive for any T ; however,it annot be so if harK = 0. Indeed, aording to [Kur℄, in this ase anyomplete disrete valuation �eld belongs to one of two types; the �elds of typeI (resp. of type II) do not have arbitrarily big yli feroious (resp. wild)extensions. It would be interesting to try to answer Question 11.1.3 in termsof re�nement of Kurihara's lassi�ation by Ivanova [I12a, I12b℄.One more aspet of this topi is the following phenomenon in the mixedharateristi ase: the assumption that the minimal rami�ation break of L=Ktakes its almost maximal value, namely, h >
peKp−1 − 1, has strong impliationsfor the whole rami�ation �ltration; see [PVZ℄ for a number of results in thisdiretion.11.2. Small rami�ation numbers and embedding problem. In thissubsetion, we assume harK = 0.By a result of Miki [Mik74℄, if L=K is a yli extension of degree p, it anbe embedded into a yli extension of degree pn if and only if L(�p) = K1(x),where xp ∈ NKn=K1K∗n, and Kn denotes K(�pn). The following statement isan easy onsequene [VZ, §2℄.11.2.1. Proposition. Let L=K is a yli extension of degree p withdK(L=K) < eKp−1 . Then L=K an be embedded into a yli extension ofdegree p2.We are interested in generalization of this observation to any Galois groups.11.2.2. Question. Let f : G′ → G be an epimorphism of �nite groups.Does there exist an "f > 0 suh that, for any Galois extension L=K ofmixed harateristi omplete disrete valuation �elds with Gal(L=K) ≃ Gand dK(L=K) < "feK , the embedding problem (L=K; f) has a solution?



RAMIFICATION OF HIGHER LOCAL FIELDS 5711.3. Rami�ation and higher ad�eles. It would be interesting to under-stand what kind of rami�ation data are needed in adeli theory of arithmetisurfaes. For example, the non-wild part of the ondutor of the urve appearsin [Fe10, Subsetion 3.4℄; an we allow wild rami�ation here?Referenes[AM℄ Abbes A., Mokrane A., Sous-groupes anoniques et yles �evanesentsp-adiques pour les vari�et�es ab�eliennes, Publ. Math. Inst. HautesEtudes Si. 99 (2004), 117{162.[AS02℄ Abbes A., Saito T., Rami�ation of loal �elds with imperfetresidue �elds. I, Amer. J. Math. 124 (2002), no. 5, 879{920,arXiv:math/0010103.[AS03℄ Abbes A., Saito T., Rami�ation of loal �elds with imperfet residue�elds. II, Kazuya Kato's �ftieth birthday, Do. Math. 2003, ExtraVol., 5{72. (eletroni)[AS09℄ Abbes A., Saito T., Analyse miro-loale l-adique en arateristiquep > 0: Le as d'un trait, Publ. Res. Inst. Math. Si. 45 (2009), no. 1,25{74.[AS11℄ Abbes A., Saito T., Rami�ation and leanliness, Tohoku Math. J.(2) 63 (2011), no. 4, 775{853.[Abr00℄ Abrashkin V. A., On a loal analogue of the Grothendiek onjeture,Internat. J. Math. 11 (2000), no. 2, 133{175.[Abr02℄ Abrashkin V. A., Rami�ation theory for higher dimensional loal�elds, Algebrai Number Theory and Algebrai Geometry, Contemp.Math., vol. 300, Amer. Math. So., Providene, RI, 2002, pp. 1{16.[Abr03℄ áÂÒÁÛËÉÎ ÷. á., áÎÁÌÏÇ ÇÉ�ÏÔÅÚÙ çÒÏÔÅÎÄÉËÁ ÄÌÑ 2-ÍÅÒÎÙÈ ÌÏ-ËÁÌØÎÙÈ �ÏÌÅÊ ËÏÎÅÞÎÏÊ ÈÁÒÁËÔÅÒÉÓÔÉËÉ, �Ò. íÁÔ. ÉÎ-ÔÁ òáî241 (2003), 8{42.[Abr07℄ Abrashkin V. A., An analogue of the �eld-of-norms funtor and ofthe Grothendiek onjeture, J. Algebrai Geom. 16 (2007), no. 4,671{730, arXiv:math/0503200.[Abr10℄ Abrashkin V. A., Modi�ed proof of a loal analogue of theGrothendiek onjeture, J. Th�eor. Nombres Bordeaux 22 (2010),no. 1, 1{50, arXiv:0907.3035.[Ba℄ Barrientos I., Log rami�ation via urves in rank 1, Preprint, 2013,arXiv:1307.5814.[Be℄ Berthelot P., Introdution �a la th�eorie arithm�etique des D-modules.II, Ast�erisque 279 (2002), 1{80.[BCS℄ Boltje R., Cram G.-M., Snaith V. P., Condutors in the non-separableresidue �eld ase, Algebrai K-theory and Algebrai Topology (Lake
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