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RAMIFICATION OF HIGHER LOCAL FIELDS,
APPROACHES AND QUESTIONS

© L. XIAO, I. ZHUKOV

A survey paper includes facts, ideas and problems related to ramification in
finite extensions of complete discrete valuation fields with arbitrary residue
fields. Some new results are included.
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This is yet another attempt to organize facts, ideas and problems concern-
ing ramification in finite extensions of complete discrete valuation fields with
arbitrary residue fields.

We start in §3 with a rather comprehensive description of the classical rami-
fication theory describing the behavior of ramification invariants in the case of
perfect residue fields. This includes some observations that could be not pub-
lished earlier, e.g., Prop. 3.3.2 and 3.5.1. We proceed in §4 with the detailed
study of an example showing that almost the entire classical theory breaks
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2 L. XIAO, I. ZHUKOV

down if we admit inseparable extensions of residue field and this cannot be
easily repaired.

The remaining part of the survey describes several approaches aimed to
reproduce parts of the classical theory in the non-classical setting.

Before discussing general constructions of the upper ramification filtration,
in §5 we consider separately abelian extensions starting with an important case
of m-dimensional local fields (with finite last residue fields). The study of this
case can be helpful in development of appropriate intuition, especially for those
familiar with higher local class field theory. Introduction of m-dimensional
local fields both determined interest to generalization of classical ramifica-
tion theory and suggested tools for this; development of each of the main
approaches to higher local class field theory (by Parshin, Kato, Fesenko) was
complemented by studies of ramification theory for abelian extensions of such
fields. We continue with a discussion of Kato’s generalization of Swan conduc-
tors, which defines an upper ramification filtration for an abelian extension of
any complete discrete valuation field.

§6 is devoted to the description of upper ramification filtrations in the gen-
eral case. This section includes very different approaches: that of Abbes and
T. Saito using rigid analytic geometry, and their reinterpretation by means of
[-adic sheaves; that of Kedlaya and the second author using p-adic differential
equations; that of Borger using generic perfection; and that of Boltje, Cram
and Snaith. We list the basic properties of the ramification filtrations first, and
then discuss how to prove the properties using specific constructions. We give
references on the comparison results among these constructions. At the end,
we introduce the notion of irregularities with properties analogous to those of
ramification.

The next section starts with the observation that we still do not have a “fully
satisfactory” ramification theory since the upper ramification filtration does
not give us enough information about “naive” invariants including the lower
ramification filtration; we sketch some requirements for a “satisfactory theory”.
We proceed to describe an approach based on the theory of elimination of
wild ramification. It results in a construction bearing some properties of the
classical theory and giving additional information on the ramification of the
given extension. This approach still does not fill the gap but gives some room
for further developments as mentioned at the end of the section.

§8 and §9 are devoted to the approach of Deligne who started to analyze
2-dimensional ramification problems by looking at all their 1-dimensional re-
strictions. This makes sense in the context of 2-dimensional schemes, and we
suggest to study ramification in an extension of 2-dimensional local fields by



RAMIFICATION OF HIGHER LOCAL FIELDS 3

“globalizing” the setting, i.e., constructing a sufficiently nice morphism of com-
plete 2-dimensional local rings which serves as a model for given extension.
For such morphisms Deligne’s idea is applicable: we can look at the induced
morphisms of algebroid curves on spectra of 2-dimensional rings and use the
classical ramification invariants for them. This study is at a very beginning
stage, with some initial observations and a lot of open questions.

In §10, we discuss the ramification theory in a semi-local or a global geomet-
ric context, for the [-adic and p-adic realizations as well as for the analogous
algebraic D-module case. We will focus on the study of behavior of local in-
formation: Abbes—Saito ramification filtration, in a global context. The goal
of the latter is to compute the Euler characteristic in all three situations in
terms of the (local) ramification data, in hope to generalize the Grothendieck—
Ogg-Shafarevich formula. Furthermore, we hope to describe or even define
log-characteristic cycles using the ramification data.

The last section includes some open questions which we find curious and
which are not covered in the previous text.

We almost do not touch here asymptotic properties of ramification numbers
in infinite extensions and related notions of deeply ramified or arithmetically
profinite extensions except for Subsection 3.10; our subject is restricted to the
area of finite extensions of complete fields which still remains full of mystery.

We understand that the subject is not fashionable and in many aspects
looks elementary. For this reason, various interesting results, observations,
conjectures and questions have good chances to remain unpublished or tend
to be forgotten; some of the included questions can already have answers. We
would be happy to learn more about what is known and what is unknown;
please do not hesitate to send us your comments and suggestions.

Anyway, we were concentrated mostly on the current state of the subject
and even more on open questions (chosen according to our personal tastes);
we did not aim to give a historical survey of the subject and apologize for
obvious incompleteness (and possible bias) of the presenting traces of historical
information.

We are very grateful to V. Abrashkin, I. Barrientos, D. Benois, 1. Faizov,
I. Fesenko, E. Lysenko, M. Morrow and the anonymous referee for valuable
remarks.

Notation

If K is a complete discrete valuation field of characteristic 0 or p with the
residue field of characteristic p > 0, the following notation is used.
e T = Tg: an arbitrary uniformizing element of K;
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e v = vg: the valuation on K as well as its (non-normalized) extension to
the algebraic closure of K; we normalize it so that v(mg) = 1;

e O: ring of valuation in K;

emg ={a € Ok :v(a) >0}: the maximal ideal of Ok;

e Uk =05
) Z’K:1+mZK,z217
e |- |: the norm on K given by |7|*(); when K is of mixed characteristic, we

require that |p| = p~;

e K: the residue field of K;

e a: the residue class in K of a € Ok

e ¢ = e = v (p): the absolute ramification index of K;

e K?8: an algebraic closure of K;

e K?": the maximal abelian extension of K inside a given K®#;

e G: the absolute Galois group of K (often abbreviated to G when there
is no confusion);

e (pn: a primitive p™th root of unity in K2 (assuming char K = 0).

For any integral scheme S, k(S) is the field of rational functions on S. For
an integral domain A, Q(A) is its fraction field.

A representation of G is always assumed to be continuous.

§1. Basic definitions

1.1. Ramification invariants. Here we recall various ramification invari-
ants associated with a finite extension L /K where K is a complete discrete
valuation field with the residue field K of characteristic p > 0. We shall make
a distinction between the classical case when K is perfect (or at least when
L/K is separable) and the non-classical case when this assumption is omitted.

We mention without reference facts proved in [Se68] or [FV]; in other cases,
proofs or references are usually included.

The most well-known ramification invariants are:

e the ramification index e(L/K) = v (mk);

e the different Dy, x, which can be defined, e.g., as the annihilator ideal of
the Or-module of Kahler differentials Q%,) oK

L K
e the depth of ramification

dy(L/K) = inf (vy(Trr i a) — vpi(a)),

where M is any finite extension of K.
These three invariants are related by a simple formula [Hy, formula (1-4)]:

v (Pryk) = e(L/K) =1 +di(L/K). (1)
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One of the fundamental properties of the depth is its additivity [Hy, Lemma
(2-4)]. Namely, for an intermediate field K’ in L/K we have

dyv(L/K) = du(L/K') + dy (K'/ K). (2)
We have
[L:K]|=elL/K)f(L/K)=e/(L/K)eyw(L/K)fs(L/K)fi(L/K) = etewfsfi,

where (e;,p) = 1, ey, = p" for some N >0, fs = [L : Klsep, fi = [L : Klins-
A finite extension L/K is said to be:
e unramified, if [L : K| = f;
e totally ramified, if fo = f; = 1;
e tame, if e, = f; = 1;
o wild, if [L : K| = ey;
e ferocious,t if [L : K] = f;;
o weakly unramified, if e; = e, = 1
o completely ramified, if e, = fs = 1.
Note that L/K is tame if and only if d,(L/K) = 0 [Hy, Remark (2-12)].
If L/K is a Galois extension with Galois group G, for any o € G one defines
the Artin and Swan ramification numbers by the formulas

i(0) = ia(o) = inf vi(o(e) - a);

s(o) = sg(o) = yEielrljf* vp(o(a)at —1).

In particular, our convention says ig(1) = sg(1) = co.
If O is generated by z1,...,z, as an Og-algebra, we have

ig(o) = irilva(a(:ri) — xz;);

L_1).

sq(o) = ilzjva(a(xi)xi_

In the classical case we have [Sn, 6.1.4]:

0, ig(o) =

On the other hand, if L/K is ferocious, then sg(0) = ig(o) for any o € G.
For an integer i > —1 the ith (“lower”) ramification subgroup is defined as

Gi={oceG:ig(o) =i+ 1}. (3)

sa(o) = {ig(a) —1, iglo) > 8

1Such extensions are more often referred to as fiercely ramified; this is a translation
of original French expression “ferocement ramifié”. However, John Coates told one of the
authors that the English word “ferocious” is more appropriate here than “fierce”.
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More generally, for non-negative integers n and i, the (n,4)th ramification
subgroup is defined as

Gni={o€G:vp(o(x)—x) =>n+iforal zemi}

It is a normal subgroup in G. There is a need to consider G, ; with ¢ > 0 only
in the non-classical case. Indeed, in the classical case G, ; = Gy if p|i, and
Gn,i = Gy, otherwise [dS, §2].

The subgroups Gy, = Gp410 and H,, := Gy, form a filtration on G [dS,
Prop. 2.2-2.3]:

G2Gy2H 2G12Hy D --- 2 {1}

Here G /Gy ~ Gal(L/K) and (G : Gy) = fs(L/K); Go/H; is a cyclic group of
order e;(L/K); H; is a p-group of order e, (L/K) fi(L/K). The subgroups Gg
and Hy will be referred to as the inertia subgroup and the wild ramification
subgroup of G respectively.

For 7 > 1, the subgroups G, ; are non-informative, since

I% .
Gni= v pJ(Z‘, when n > 1,
anla b | Z,

and (when n = 1) G1;/H; is exactly the kernel of multiplication by 4 in the
cyclic group Go/H; (see [dS, Prop. 2.3]).

All elements of { s(0) : 0 € Gy, 0 # 1} are called the (“lower”) ramification
breaks of L/K. If L/K is an inseparable normal extension, the ramification
breaks of L/K are defined as {the breaks of Ly/K}U{oco} where Ly/K is the
maximal separable subextension of L/K.

In the classical case the breaks are exactly the nonnegative integers ¢+ with
G; # G If (G; : Giy1) = p™, then 1 is called a ramification break of
multiplicity m.

For the rest of the subsection, we assume that L / K is separable. For a Galois
extension L/K, the Hasse-Herbrand function ¢,k : [~1,00) — [=1,00) is a
piecewise linear map defined by the formula

v dt
‘PL/K(“) :/0 m;

here it is assumed that G; = G for non-integral ¢, i.e., in the formula (3)
we allow real numbers ¢, and (Go : Gy) = 1 for t < 0. Since ¢,/ is strictly
increasing, the inverse function 9, /x is well defined.

It is known that, for a normal subextension M/K, we have

YL/K = PM/K °¥PL/M-
(Tt is essential here that we consider the classical case!) Therefore, oy /k can
be defined for an arbitrary finite separable extension L/K by the formula
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YLk = Pr//K © P11, where L'/ K is any finite Galois extension containing
L/K.
Using the Hasse—Herbrand function, we define the “upper” ramification sub-
groups
G" = G"/)L/K(u) for all u > —1.

The non-negative rational numbers u such that G # G* for any v > u are
called the upper ramification breaks of L/K. The biggest such u is called the
highest ramification break, denoted by b(L/K).

The upper ramification breaks are exactly the ordinates of points on the
graph of ¢y, i where the slope changes, whereas the lower ramification breaks
are their abscissas. The number 0 is a break if and only if e; # 1; the other
breaks are called wild. A change of slope by a factor p™ corresponds to a wild
break of multiplicity m. This property can be used as a definition of lower
and upper breaks for non-Galois finite extensions L/K. (In this case even the
lower breaks need not be integral.)

1.1.1. Example. Let L/K be a totally ramified cyclic extension of degree p”,
and let s; < --- < s, be all Swan ramification numbers of L/K. Then L/K
have n upper breaks hy < --- < hy,, all of multiplicity 1, and

by —sl—I—ZSZ Sll Zp_lsz — S (4)

1.2. m-dimensional complete discrete valuation fields. We give only
definitions; see [HLF, Ch. I] for more information.

For K a field, a structure of an m-dimensional complete discrete valuation
field (m-CDVF) on K is a sequence of fields k,,, = K, kp,—1, ..., ko such that
k; is a complete discrete field with the residue field k;_1, 1 <4 < m. The field
km—1 (resp. ko) is referred to as the first (resp. the last) residue field of K.

If the last residue field is perfect, K is said to be an m-dimensional local
field. (NB: often it is required that the last residue field is finite.)

A system of local parameters of K is any m-tuple t1,...,t, such that each
t; is a lifting to K of some uniformizing element of k;.

Fix a system of local parameters %y, ..., %, and consider the map

vi = (v1,...,0;m): K* =727,

where v, = vk, Um1() = vk, (@m_1), Qm_1 is the class of aty"™*
in k,,,_1, and so on. Then vg is a discrete valuation of rank m; here Z™ is
lexicographically ordered as follows: i = (i1,...,im) <j = (j1,.-.,Jm), if and
only if

1 < Jly U1l = Jltls -+ om = Jm for some [ < m
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If we change the system of local parameters, the valuation is replaced by an
equivalent one. Thus, v is defined up to equivalence.

For any finite extension L/K, there exists a unique structure of an m-
dimensional complete discrete valuation field on L compatible with that on
K; the non-normalized (Q™-valued) extension of vix on L is also denoted
by vik.

The notion of depth of ramification can be generalized as follows [Hy, (1-3)]:

dur(L/K) = inf (var(Trr x a) = var(a)),

where both L and M are finite extensions of K.

§2. Cyclic extensions of degree p and genome

2.1. Cyclic extensions of degree p. Here we look carefully at the case of
a Galois extension L/K with [L : K] = p (see also [Hy, Lemma (2-16)]). This
is important for discussing examples in the subsequent sections.

We fix a generator o of the Galois group G = Gal(L/K); then i(c) and s(o)
are independent of the choice of o; so we put s(L/K) = s(o).

Since [L : K] = eey fsfi, and e, is prime to p, there are 3 cases.

Case U (unramified): fs = p, e, = f; = 1. In this case, i(0) = s(o) = 0.

Case W (wild): e, = p, fs = fi = 1. Set s = v(o(mwr)/nr — 1). Then
Or, = Ok|rr] immediately implies i(c) = s+ 1 and s(o) = s.

Case F (ferocious): f; = p, fs = e, = 1. Choose any ¢ € Op, such that
t¢ K. Set s =vp(0(t)/t — 1). Then Of, = Ok|t] and i(0) = s(o) = s.

In all three cases we have dr(L/K) = (p — 1)s(L/K).

Let us compute the ramification invariants for specific constructions of cyclic
extension of degree p, i.e., for Artin—Schreier and Kummer extensions.

1°. char K = p. In this case L = K (z) for z satisfying 27 —z = a € K. We
put p(X) = XP? — X. We have v(a) < 0 since mg C p(K) by Hensel’s lemma.
Choose an equation with maximal possible v(a).

If v(a) = 0, the Hensel’s lemma implies @ ¢ p(K), and we are in Case U.

If v(a) < 0 and ptv(a), we are obviously in Case W, and s(L/K) = —v(a).

If v(a) < 0 and p | v(a), the maximality of v(a) implies that 7—*(®)g ¢ K.
It follows that we are in Case F, and s(L/K) = —v(a)/p.

2°. char K =0, (, € K. In this case L = K(z) for z satisfying ¥ = a € K.
We can choose a with v(a) =1 or v(a) = 0; in the latter case we require that
I =v(a — 1) is maximal. Then we can distinguish 5 cases.

A. v(a) = 1. Here we are in Case W, and

S(LIK) = oG = 1) =~ = P
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B.v(a) =0 and @ ¢ K. This is Case F, and
er, e
s(L/K) =v((p—1) = _1: —

=1,1< % p)[l This is Case W, and s(L/K) = 25 —1.

0 p | I. From the maximality of [ it follows that
this is Case F, and s(L/K) = %(% —1).
E.v(@) =0,a=1,1> p—l It follows from Hensel’s lemma that in fact

[ = pf'%el, and this is Case U.

2.2. Genome of an extension. Let L/K be a cyclic extension of degree
p". It can be uniquely written as a tower L = M, /M,,_1/ ... /Mi/My = K of
cyclic extensions of degree p. The genome of L/K is defined to be the word
T1...T,, where

o (W MMy s wild,
‘O Fif M;/M;_, is ferocious.

However, it is not clear how to define the genome for a general Galois
extension of degree p™.

2.2.1. Question. Let L/K be a completely ramified Galois extension. Can
we define a tower L = M, /M,_1/.../Mi/My = K of cyclic extensions of
degree p in an “almost canonical” way so that the word T} ... T, as above is
well defined?

§3. What is nice in the classical case

Throughout this section we consider only the case when K is perfect. We
list various facts which are sometimes referred to as “beautiful ramification
theory” in the classical case. (Probably the whole collection of facts has not
been ever included in one text.)

3.1. Factor groups. Let K’ be an intermediate field in L/K. Then the ram-
ification invariants of K'/K can be described in terms of those of L/ K. More
specifically, let L/K be a finite Galois extension with G = Gal(L/K), and K’
an intermediate extension corresponding to a normal subgroup H. Then for
any o0 € G/H, o0 # 1, the Herbrand’s theorem (see [Se68, Ch. IV, Prop. 3])
says

(o) = —— 3 ia(r). (5)

It follows that we have the following statement comparing the lower and
the upper ramification filtrations on G/H with those on G.
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3.1.1. Proposition. 1. For any v > —1 we have (G/H), = GlPL/K/(v)H/H'
2. For any v > —1 we have (G/H)" = G"H/H.

3.1.2. Corollary. If H = G for some j, then
Gi/H, 1
{1},

One of the nice consequences of Prop. 3.1.1 is that we can define the upper
ramification filtration for an infinite Galois extensions L/K by the formula

Gal(L/K)’ = lim Gal(L'/K)".
L' /K finite
L'CL

<
2]

(G/H)i:{

In particular, we have an upper ramification filtration on the whole absolute
Galois group.

3.2. Subgroups. Let L/K be a finite Galois extension, and K’/ K any subex-
tension. Put G = Gal(L/K) and H = Gal(L/K'). Obviously, H; = G;N H for
any 4. Therefore,

H' = Hy, ) = Gy oy N H = GV @ n g = gt n b,

3.3. Base change. Here we observe how the ramification invariants change
as one passes from L/K to LK'/K' for some finite extension K'/K linearly
disjoint with L/K. We start with the basic case of two Galois extensions of
degree p.

3.3.1. Lemma. 1. Let L1 /K and Ly/K be Galois extensions of degree p with
positive s; = s(L1/K) and sy = s(Lo/K), and s1 < so. Then s(L1Lo/Ly) =
81, and S(Lng/Ll) = 851 —|-p(52 — 51).

2. Let L1/K and Lo/K be linearly disjoint Galois extensions of degree p
such that s = s(L/K) > 0 is the same for any subextension L/K of degree p
n Lle/K Then S(Lng/Lz) = S(Lng/Ll) = S.

Proof. Set L = L1Ls and G = Gal(L/K).
Assume first that L/K has two distinct lower ramification breaks s} < s.
Put Hy = Gy 4y, K' = L' Then by Cor. 3.1.2 we have

Gal(K'/K), i<,
{1}, i > s,

Gal(K'/K); = {

whence s(K'/K) = s.
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Let K”/K be any other subextension of degree p in L/K. Put H =
Gal(L/K"). Let op be any element of G outside H. Note that ooH contains
a unique element of Hy whose Artin number is s, 4+ 1. By (5),

. 1 sk — 4
i/ (oolrr) = Z—9((19— - (sh+1)+1-(sh+1)) =5 + 22—

+ 1.

It follows that s(K"/K) = s} + s‘/zp%s/l. Since s1 and s9 are among s(K'/K)

/ /
So—87

and (all) s(K”/K), and s; < s3, we conclude that s; = s/, so = ¢} +
In the remaining case when L/K has one break s’ of multiplicity 2, the same

computation shows that s(K”/K) = s’ for any subextension K”/K of degree
pin L/K. O

This can be generalized as follows.

3.3.2. Proposition. Let L/K and K'/K be finite Galois p-extensions. As-

sume that L/K have upper ramification breaks hq, ..., h, with multiplicities

mi,...,my. Assume that all the upper ramification breaks of K' /K are distinct

from hy, ..., h,. Then the upper ramification breaks of LK'/K' are 1k (h1),
-y Y i (he) and their multiplicities are my, ..., m;.

Proof. For [L: K] = [K': K] = p, this is the first part of Lemma 3.3.1. The
general case follows by double induction on [L : K| and [K' : K]. O

3.3.3. Question. If /K and K'/K are Galois extensions of degree p with
the same ramification break, we cannot determine the ramification invariants
of LK'/K' in general. However, in view of the second part of Lemma 3.3.1, we
can do this if we know the ramification breaks of all subextensions of degree
pin LK'/K.

How can this observation be generalized to arbitrary finite Galois p-extensi-
ons L/K and K'/K?

3.4. Filtration on the group of units and the norm map. For a finite
extension L/K, consider the norm map Ny, k¢ L* — K™ and its interaction
with the filtration on K™ given by the subgroups U;  for ¢ > 1, and the similar
filtration on L*. For any 7 > 1, define f(7) by the conditions

NpxUin CUpey gy NerUin € Upiyr1,x-

Then the map f = fr,x can be computed from the ramification breaks of

L/K and vice versa, at least if the residue field K is infinite. Indeed, [FV,
Prop. (3.1)] states essentially the following.

3.4.1. Proposition. Assume that K is infinite. Let L/K be a finite Galois
extension. Put ¢ =1y . Then for any positive integer j we have f(i) = j, if
P —1) +1<i <))
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3.4.2. Remark. Thus, for infinite K, fr/k (i) is equal to the minimal in-
teger not less than oy /x (4). If K is finite, fr/k (i) can “jump” at the lower
ramification breaks of L/K.

3.4.3. Question. How to express fr i in terms of ¢, /g when K is finite?

3.4.4. Question. What is the exact relation between fr x and ¢r i for a
non-Galois extension L/K?

3.5. Artin—Schreier and Kummer filtrations and the embedding map.
First assume that char K = p. Then we have a filtration on K/p(K) by the
subgroups .
Cix = (m + p(K))/p(K), <0

(Recall that mg C p(K) by Hensel lemma.) Then, for a finite extension L/ K,
we can consider the interaction of this filtration with a similar one on L/p(L).
For i > 0, let g(i) denote the unique integer such that e(C_; k) C C_y(;) 1, and
e(Coik) ¢ C_y(iy41,0, where e : K/p(K) — L/p(L) is the natural map.

In the same spirit, if char K = 0, (, € K, we can consider the filtration on
K*/(K*)P given by the subgroups
e = Ui (KPR, 1<
(Recall that U%H’K C (K*)P.) For a finite extension L/K and a positive

integer i < %, we let g(7) denote the unique integer such that g(C}%l—i,K) -

C;pfel_g(i)yL and 5(0}%471() ¢ C;pfel_g(i)H’L, wheree : K*/(K*)P — L*/(L*)?
is the natural map.

The function g = gz /i in both cases is closely related to 1) = /. Namely,
Prop. 3.3.2 and explicit computation of the ramification break for an Artin—

Schreier or Kummer extension immediately imply the following

3.5.1. Proposition. Let ¢ be a positive integer not divisible by p and dis-
tinct from any upper ramification break of L/K. (We also require i < L% if

p—1
char K =0.) Then g(i) = ¢(i).
If K is infinite, we can use the second part of Lemma 3.3.1 to prove

3.5.2. Proposition. When K is infinite and when i is a positive integer not
divisible by p (provided i < % if char K = 0), we have g(i) = (7).

Since the upper breaks are always prime to p, this means that g determines
the ramification invariants of L/K whenever char K = p or K is infinite.

Similarly, if (,» € K, one can define an explicit filtration on K*/(K*)P"
compatible with the upper ramification filtration on the maximal abelian ex-
tension of K of exponent p.
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3.5.3. Question. Can we recover the function 9y, x from the filtrations on
K ((pn)* /(K (Cpr)*)P" for all n, thus eliminating the condition i < 24 in
Prop. 3.5.27

If char K = p, the explicit form of the filtration on W, (K)/p(W,(K)) com-
patible with the ramification filtration is given in [Br, §1]. Here W, denotes
the group Witt vectors of length r, and

p((zo, ... zr—1)) = (20, .., 20 _)) —w, (k) (0, -+, Tr1);

note that Brylinski uses a different notation. For a new proof and very clear
treatment of related questions, see [Th].

3.6. Hasse—Arf theorem.

3.6.1. Theorem. Let L/K be a finite abelian extension. Then all upper ram-
ification breaks of L/K are integral.

See [Se68, Ch. TV, §3], [FV, Ch. III, (4.3)].
An inverse result is due to Fesenko [Fe95b].

3.6.2. Proposition. Let L/K be a totally ramified finite Galois extension
such that for any totally ramified finite abelian extension K'/K all upper ram-
ification breaks of LK'/K' are integral. Then L/K is abelian.

3.6.3. Question. Can we replace the class of all abelian extensions K'/K by
a smaller class here, e.g., by the class of all elementary abelian extensions, at
least in the case char K = p?

3.6.4. Question. For a finite Galois extension L/K, can we determine
Gal(L/K), if we know all upper ramification breaks of LK'/K’ for all abelian
extensions K'/K?

One of the related results is the following Sen congruence (see, e.g., [Sn,
Theorem 6.1.34]).

3.6.5. Proposition. Let L/K be a finite Galois extension, o € Gal(L/K)
such that s(o) > 0 and o?" # 1. Then
s(apnil) = s(apn) mod p".

3.7. Artin and Swan representations. (See [Se68, Ch. VI, [Se77] as well
as the discussion in [Sn, 6.1].) Fix a finite Galois extension L/K, and put G =
Gal(L/K). We define the Artin and Swan central function ag, swg: G — 7
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by formulas

f ZT;él iG(T)v o=1,
f SG( ) o 75 L,
swg (o) =

CZG(U) _ {_f "L‘G(O-)7 o 7£ 17

fZT;élSG( )7 0 = 17

where f = f(L/K).
The Serre’s theorem on the existence of Artin representations [Se77, p. 68]
claims.

3.7.1. Proposition. The central functions ag and swg are characters of
certain complex representations of G.

For the corresponding representations Ag and SWga we have the follow-
ing explicit formulas in the ring of complex representations R(G) (cited from
[Sn, 6.1]):

o0

Ag = [Go: Gi| ' Tndg, (Tnd(,, (1) — 1)
=0
and
SWe = Ag + Indg, (1) — Ind(, (1),

where Ind$ (V) denotes the representation of G induced by the representa-
tion V of H, and 1 is the class of 1-dimensional trivial representation of the
corresponding group.

For a normal subgroup H of GG it follows from Herbrand’s theorem that

SWayn ~ SWe ®ciq) C[G/H]. (6)

For the character x of a complex representation V of G, the Artin conductor
of x (or V) is defined as

Arg (x) = Arg(V) = (ag; x)a = @l ZGG
geG@

Similarly, the Swan conductor of x (or V') is

Swi(x) = Swk (V) = (swa, x)a = @l Z swa(g
9€eG

we have

Swi(V) = Arg (V) + dim V& — dim V.
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3.7.2. Example (see [Se68, Ch. VI, Prop. 5]). Let L/K be a totally ramified
cyclic extension of degree p™, and x the character of any faithful (i.e., injec-
tive) representation of G = Gal(L/K) = (g). Let s; < --- < s, be all Swan
ramification numbers of L/K. Then

1 e
Swic(x) = = 3 Ciswa()
p =1
1
=— (*swi(g')
p r=0 vy (2)=r
1 n—1 pr—1
=—— > Srql ¢+ Z sa(g')
p r=0 ’Up(i):j =1
n—1
= (Sn + Z(pnfr - pniril)sr—&-l)
r=0
= b(L/K)

in view of (4), where ( is a primitive p"th root of unity in C.

3.7.3. Remark. This is the simplest case of the following fact (see [Se68,
Ch. VI, §2, Ex. 2]). Let V be an irreducible representation of G of dimen-
sion d. Then Arg (V) = d(b(L/K) + 1), where b(L/K) is the highest (upper)
ramification break defined in Section 1.1.

As a consequence of this fact, we may define the Artin conductor and Swan
conductor of a finite dimensional complex representation V of G to be

Arg (V) = Z (a+1) -dimVGaJr/VGa, Swg(V) = Za . dimVGa+/VGa.

a>—1 a0

Note that one can recover the ramification filtration on G from Artin con-
ductors of all its irreducible representations. (The same does not hold for Swan
conductors since Swan conductor measures only wild ramification and does not
know anything about (G : G1).)

In a similar way, one can define Swan conductors for F;-representations;
this version of Swan conductor is used in the Grothendieck—Ogg—Shafarevich
formula (see Subsection 3.11 below).

There is an alternative and equivalent way of stating Proposition 3.7.1.

3.7.4. Proposition. For all finite dimensional complex representation V of
G, the Artin conductor Arg (V') and the Swan conductors Swi (V) are non-
negative integers.
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Applying this to all one-dimensional representations of G and using the
above explicit description of Artin and Swan conductors (Remark 3.7.3), we
obtain that b(L/K) is always an integer for an abelian extension L/K. Thus,
we recover the original Hasse—Arf Theorem 3.6.1. So sometimes the above
proposition will be also referred to as the Hasse—Arf theorem.

3.8. Local class field theory. Let K be a complete discrete valuation field
of any characteristic with a quasi-finite residue field of prime characteristic.
(A field F is called quasi-finite if Gp ~ Z.)

The central theorem of local class field theory states that there exists a
homomorphism O : K* — Gal(K*"/K) uniquely determined by the follow-
ing two properties.

1. For any finite abelian extension L/K, © induces an isomorphism Oy, /x :

2. For any prime element wg, the restriction of @ (mwg) on the maximal
unramified extension of K is the Frobenius automorphism.

It appears that the reciprocity map transforms the valuation filtration on
the multiplicative group into the upper ramification filtration on (abelian)
Galois group. More precisely, we have the following results. ([Se68, Ch. XV,
Th. 1 with Cor. 3 and Th. 2]. Note that Np,/xUymn),r, C Un,x by Prop. 3.4.1.)

3.8.1. Proposition. Let L/K be a finite abelian extension. Put 1p = Yr/K-
1. For any positive integer n, the canonical map Un,K/NL/KUw(n),L —
K*/Np, kg L* is injective.
2. The reciprocity map Op i transforms the filtration on K* /Ny g L* by
subgroups Un i [Np/x Uyp(ny,r. into the fillration on G = Gal(L/K) by G™.

3.8.2. Proposition. Let L/K be a possibly infinite abelian extension with
Galois group G = Gal(L/K). Then for any positive integer n, the image of
Ok (Un k) C Gal(K*/K) in G is dense in G™ (and is equal to G™ if the
residue field K is finite).

In characteristic 0, provided (, € K, this implies the self-duality of the
valuation filtration on K*/(K™*)P with respect to the Hilbert symbol. In char-
acteristic p, we have a duality between the valuation filtration on K*/(K*)P"
and the Brylinski filtration on W,.(K)/p(W,(K)), see [Br, Theorem 1].

For Fesenko’s non-abelian reciprocity map [Fe01], compatibility with the
ramification filtration was established in [IS].

3.9. Local anabelian geometry. Let K; and K> be local fields (complete
discrete valuation fields with finite residue fields) such that there exists an
isomorphism between absolute Galois groups of K; and Ks preserving the
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ramification filtration. Then this isomorphism is induced by an isomorphism
between K7 and Ko.

This was first proved in the characteristic 0 case by Sh. Mochizuki [Mo-S].
A proof suitable for any characteristic was given by Abrashkin [Abr00, Abr10].

3.10. A theorem of Deligne. Let K and K’ be two complete discrete val-
uation fields (typically with large absolute ramification indices in the case of
mixed characteristic). Assume that there exists b € N such that there is an
isomorphism Ok /7 Ok = Ok /7%, Ok as rings. Deligne [De84] proved the
following result.

3.10.1. Proposition. Keep the notation as above. If K has a perfect residue
field, then there is a canonical isomorphism

Gr/GY = G /Gh. (7)

In other words, the quotient Galois groups above depend only on the trun-
cated discrete valuation rings OK/W%OK = Ok /w%,OK/. Note that there
were no assumptions on the characteristics of K and K’. In particular, they
could be different, which may be used to build a connection between the mixed
characteristic fields and the equal characteristic fields on the aspect of ramifi-
cation theory.

Deligne’s theorem provides an alternative way to understand the field of
norms of Fontaine and Wintenberger [FW1, FW2] (which precedes Deligne’s
work).

Put K, = Qp({pn) for n € N and K = UpenK,,. We take the uniformizer
Tk, to be (;n — 1. Then the tower (K,)nen is APF (short for arithmetically
profinite) in the sense of [FW1, FW2]. The following statement is a special
case of the main result of Fontaine-Wintenberger [FW1, FW2] (exposed also
in [FV, Ch. III, Theorem 5.7]).

3.10.2. Theorem. There is a canonical isomorphism between the absolute
Galois group of Ko and that of the equal characteristic field Fy((T')).

One can give a heuristic proof using Deligne’s theorem as follows. For each
n, we put r, = p"~!(p—1) so that O, /mj2 = F,[T]/(T"). Deligne’s theorem
then implies that we have an isomorphism

GFP((T))/G;Z((T)) = GKn/G;?n' (8)

An easy computation shows that ¢, x(n) = r,. The basic property in Sub-
section 3.2 implies that G} = G N Gk, . Thus, taking the inverse limit of
(8) gives an isomorphism between G (1)) and Gk ..

We expect that the same proof works for general complete discrete valuation
field K in place of @, at least when the residue field K is perfect, and hence
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we could reprove the main result of [FW1, FW2] this way. The APF condition
is expected to ensure that the inverse limit of (8) as n — oo gives the isomor-
phism between the Galois group of K, and that of K((T)). Unfortunately,
we do not know if such a proof exists in the literature.

3.11. Global formulas. Let X be a smooth projective curve over an alge-
braically closed field and let ) be its normalization in a finite extension of
kE(X). Riemann-Hurwitz formula compares the genera of these curves:

29y —2 = [K(Y) : k(X))(29x — 2) + D _va(Dy ),
Q

where  runs over all closed points of ).

Let U be a dense open subset of X', 7 a geometric generic point of X', and F
a locally constant sheaf of Fj-modules of finite rank on Ug;. Then the geometric
generic fiber M = Fj is a finite-dimensional F;-representation of Gal(k(X)); it
factors through Gal(L/k(X)), where L/k(X) is some finite Galois extension.

For a closed point P of X', the Swan conductor Swp F is defined as the Swan
conductor of M considered as Gal(L,,/k(X),)-module, where v corresponds
to P, and w is any extension of v to L. Independence of L follows from an F;-
analog of (6). Then the Grothendieck—Ogg—Shafarevich formula for F reads:

Xe(U, F) = xc(U,F)rank F — Y~ Swp F, (9)
Pex\U

where x.(U, -) is the Euler-characteristic of the corresponding étale sheaf. (This
can be obtained from the shape of G.-O.-S. formula in [Mil] as follows. Let
u: U — X, Fy a constant sheaf on Ug; of rank equal to rank F. Apply the
formula in [Mil, Ch. V, Th. 2.12] to both wy* and w;Fp and compute the
difference.)

See [Ko6] for equivariant versions of Riemann—Hurwitz and Grothendieck—
Ogg—Shafarevich formulas.

3.11.1. Remark. We point out that there is an analogous statement for
lisse Q;-sheaves instead of lisse Fj-sheaves.? In fact the formula for the former
reduces to that of the latter, as we explain now.

A lisse Q;-sheaf F corresponds to a representation p : m(U) — GLg(Qy).
Since the fundamental group is profinite and hence compact, the image p(m1(U))
lands in GL4(Z;) (up to conjugation). This integral representation p° gives rise
to a lisse Z;-sheaf F°. Put p = p°modl and F = F°/I. It is not difficult to

2We can of course consider a finite extension of Q; in place of Q; the argument goes
through with no essential changes.
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show that the Euler characteristic of F agrees with that of . We need to
match the Swan conductors.

Note that, for each point P € X\U, the wild ramification group Wp at
P is a pro-p group; but the kernel of GL4(Z;) — GL4(F;) is a pro-I group.
Hence the image p(Wp) has trivial intersection with Ker(GL4(Z;) — GL4(F)));
consequently, we have an isomorphism p(Wp) = p(Wp). From this it is clear
that SwpF = SwpF, since both sides depend only on the action of the wild
inertia group.

3.12. Completeness. Given a finite Galois extension of complete discrete
valuation fields L/K with Gal(L/K) = G, we have a number of ramification
invariants occwrring in various formulas: e(L/K), vr(Dr ), Gi and G* for
i >0, Arg (V) and Swg (V) for a complex representation V' of G. However,
there is a sufficient system of ramification invariants, namely, the lower rami-
fication filtration, which “describes the ramification completely”: all the other
ramification invariants (including local terms of classical global formulas) can
be expressed in terms of it. (Upper ramification filtration is a sufficient system
of invariants as well. The same is true for Artin conductors of all complex
representations of G.) For example,

e(L/K) = |Gol
vr,(Dyk) = i |Gi| = 1; (10)
and - o
swielV) = 3 G dime(V/Ve)

where V is a finite-dimensional complex representation of G.

§4. What is missing in the non-classical case

This section is devoted to the detailed study of an example of extension L/ K
with Gal(L/K) ~ (Z/p)? for which Lemma 3.3.1 (as well as any reasonable
analog of it) fails. Furthermore, the example exhibits obstacles to extension of
the most part of the classical theory to the general case.

Let K be a complete discrete valuation field of characteristic p > 0 with
imperfect residue field. Fix a prime element 7 and ¢ € Ok such that ¢ ¢ K.
Take some positive integers N > n > m such that N =n = —1 (mod p). Now
we define L /K and Lo/K by Artin—Schreier equations:

Ki=K(z1), 2 —z1=a1=7""+7 "™,

Ky = K(z2), :1:1;—:1:2 :7T7N,

(11)
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and set L = KlKQ = K(:El,.%‘g) = Kl(m‘g) = Kg(m‘l).

In view of the considerations in §2, both K;/K and K3/K are wild, and
s(K1/K) = n, s(Ky/K) = N. Note also that for any subextension K'/K of
degree p in L/K we have s(K'/K) = N unless K’ = K.

Kl/L\KQ
N A

Let us compute s(L/K3). Put N = pD —1. Then 73 = z27? is a uniformizer
of Ky. The equation

(7P xo)P — 7P~ DP (7D g0y = 1

implies that

—1)pD+1
p Wép )pD+

7'(':7"'2_ +...’

where the dots denote terms of higher order. Thus,

ap = (Wg _ Wépfl)PDH T+ (ﬂ_g _ ﬂ_épfl)PDJrl )T
_ ﬂ';pn(l . ﬂ_épfl)prprl +... )7n + W;pm(l . ﬂ_épfl)prprl T+ )7mt
=P (14 N ) P w4
=y P oy POV Py
=m," +n7r2_pn+(p_1)N+---+W;pmt+--‘ (mod p(K>)),
~~ — N——
-n —pn+(p—1)N —pm

where the numbers under the braces denote the corresponding values of vg,.

Assume further that m > %. Since —n < —pn + N(p — 1), the valuation of
the sum is —pm. We can conclude that L/K, is ferocious, and s(L/K2) = m.
Note that the latter number is not determined by the values of n = s(K;/K)
and N = s(K3/K). (However, if m < 2, the valuation of the sum is —n, the
extension L/K> is wild and s(L/K3) = m. In fact, we are in the classical case
here.)

We see that an analog of Lemma 3.3.1 is not true in the general case: we
cannot predict s(L/K>) even having known the s(K’/K) for any subextension
K'/K of degree p in L/K.
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Next, the “compatibility with factor groups” property also fails in the gen-
eral case. Indeed, from the depth additivity (2) we have

di(L/K) =dr(L/K3) +dp(K2/K) = (p—1)m+ (p—1)N
and
dr(L/K1) =di(L/K) —dp(K1/K) = (p—1)(m + N) — (p— 1)n,

whence s(L/K;) = m + N — n. Therefore, the two breaks of the (lower)
ramification filtration of L/K are m and m + N — n, and these two numbers
do not give enough information to determine, say, s(K;/K) = n.

Essentially, this example shows that we cannot give a suitable definition of
“upper ramification filtration” based on the usual (Artin or Swan) ramification
numbers, and consequently we lose all constructions and facts using this upper
filtration: Hasse—Arf theorem, Artin and Swan representations, global formulas
etc.

Also, we do not have any “completeness” for the known systems of in-
variants. In particular, one of the motivating goals in the development of a
“non-classical” ramification theory could be to obtain an explicit form for the
order of different (or, equivalently, for the depth of ramification) in terms of
suitable lower or upper ramification breaks, i.e., an analog of (10).

For more examples showing “mysterious behavior” of ramification invariants
in the non-classical case (see [Hy], [Sn, 6.2], [Lo]).

§5. Upper ramification filtration: abelian extensions

As we could see in the previous section, the classical ramification invariants
behave poorly when the residue field K is no longer perfect. In particular,
we cannot expect any theory of upper ramification filtration based on usual
ramification numbers. However, one can be interested in an “independent”
construction of an upper filtration per se with properties analogous to some
properties of the upper filtrations in the classical case, e.g., to some of those
stated in Subsections 3.1, 3.6, 3.7, 3.8, 3.9, 3.10, 3.11.

Fortunately, there is a quite satisfactory theory for the upper ramification
filtrations, which now becomes standard. The general construction will be
addressed in the next section, and here we are concentrated on the case of
abelian extensions.

5.1. Upper filtration via class field theory. Note that for abelian exten-
sions of usual local fields the upper ramification filtration can be recovered
from the filtration on the multiplicative group by Prop. 3.8.1. In the same
way one could define an upper ramification filtration in the situations where
some class field theory is available, e.g., for abelian extensions of higher local
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fields with finite last residue field (see [HLF] for the basic facts about higher
local fields and [Fe96] for a survey of various versions of higher local class field
theory). This approach was explored in several papers starting from [Lo]. For
example, Hyodo [Hy]| defines (“upper”) ramification breaks for a finite abelian
extension L/K of m-dimensional local fields (with finite last residue field) as
m-tuples

] max{i € Z7" : |©® U;KEPK)| > P}, if such i exists,
0, otherwise,

for all I > 1, where O/ : KnPK — Gal(L/K) is the reciprocity map

and (Ui KwPK) is the standard filtration on K" K defined by means of the
valuation of rank m:

UiK'PK = ({u,z2,...,2m} | U, 2o, ..., 2m € K*, vi(u—1) > 1).

In other words, for i = (i1,...,im) > 0, the subgroup G! in G = Gal(L/K)
is defined as O, k(Ui K2PK) assuming that the last residue field of K is
finite. (Recall that ©;/x induces an isomorphism from KiPK/N;, / KO
onto Gal(L/K).) If we are not interested in multi-index numbering, we can

put
¢=|]Jd
im=i
for any positive integer 1.

For the case of arbitrary perfect last residue field, see [Fe95a, §4].

Using this definition, one can translate questions concerning ramification in
abelian extensions of m-dimensional local fields into questions about natural
“valuation” filtration on groups KiK. In particular, the behavior of the
upper filtration on Gal(L/K) with respect to the restriction to a subgroup
Gal(L/K') is related to the action of the norm map Ny : KiK' — KyPK
on the valuation filtration.

5.2. Kato—Swan conductor. In a compatible manner with the above con-
struction, Kato [Ka89] introduced a notion of a conductor for one-dimensional
representations of Gal(L/K), where L/K is a finite extension of a complete
discrete valuation field with any residue field.

We do not include Kato’s definition, since it is difficult to do this in a self-
contained manner; see, e.g., [Sn, 6.2]. However, his conductor KSw(y) can be
characterized by either of the following two properties [Sp99, Prop. 3.3.10 and
Cor. 3.3.11].



RAMIFICATION OF HIGHER LOCAL FIELDS 23

5.2.1. Proposition. Let x € H'(K) be a character of G* = Gal(K?*/K);
denote by L, the subfield in K2 fized by x.
1. KSw(x) is the smallest integer n > 0 such that {xr,,u} =0 in Br Ly for
any u € Upy1,1, where Ly is the mazimal unramified subextension in L, /K.
2. KSw(x) is the smallest integer n > 0 such that Upy1,x C Np sk LY.

Here H'(K) = Hom(G?,Q/Z); the braces denote the cohomological pair-
ing H'(K) x K* — H?*(K) 2BrK.

From this, one can define a filtration G?P* on G?P so that, for any character
x of G2 we have

KSw(x) = inf{a > 0| G*™% C Kerx};

we call this filtration the Kato filtration on G?P.

For an m-dimensional local field K with finite last residue field and x €
H'(K), KSw(x) is exactly the smallest integer n > 0 such that @L/K(UiKﬁﬁpK)
acts trivially on L, whenever i, > n, see [Sp99, 3.4]. In other words, KSw(x)
is the last component of the maximal break j(1) for L, /K in Hyodo’s nota-
tion (12).

In the classical case this Kato—Swan conductor coincides with the usual
Swan conductor. This relation between KSw and the usual (Swan) ramification
numbers is in force also in the so-called Case II (cf. Subsection 7.2) [Ka89,
Prop. 6.8, p. 12].

5.2.2. Proposition. Let L/K be a finite Galois extension and x : Gr/x — C*

a one-dimensional representation. Assume that either L/K is separable or
e(L/K) =1 and L/K is generated by one element. Then

1
KSw(x) = — s(o)x(o),
e(L/K) Ue%ﬂ{
where we use the convention that s(1) = _ZUEGL/K,U?fIS(J)' (See Subsec-

tion 1.1 for the definition of s(o).)

§6. Upper ramification filtration: general case

In this section, we discuss a few approaches which generalize the ramification
filtration constructed by Kato to the whole Galois group. Before giving the
constructions, we list their properties in the first three subsections, provided
with typical examples. We then turn into various constructions and related
topics on the subject in the following subsections.
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6.1. Basic properties. Let K be a complete discrete valuation field as be-
fore with possibly imperfect residue field K of characteristic p. In particular, K
could be of either mixed characteristic or equal characteristic. Let G = G be
the Galois group of K. There exist two ramification filtrations G}, and G},
on G, indexed by non-negative rational numbers; they are called the (upper)
non-logarithmic ramification filtration and (upper) logarithmic ramification fil-
tration of G, respectively. Roughly speaking, the adjectives “non-logarithmic”
and “logarithmic” refer to different normalizations to balance the “wild part”
and the “ferocious part” of the ramification. In particular, when K is perfect,
both of these filtrations are the same (up to a shift of indexing) as the usual
upper ramification filtration. (See property (5) below.)

We use the standard convention for ramification filtrations: for a € Ry,
we write Gﬁlog to mean the closure of Ub>a,beQ>oG§1og and Gﬁfgg to mean
the closure of Ub>a,beQ>0Gﬁlog; and the same for the logarithmic ramification
filtration. For L a finite Galois extension of K, we use byjog(L/K) to denote
the highest non-logarithmic ramification break inf{b | Gglog C Gr}; and the
same for the logarithmic ramification filtration.

The basic properties are listed as follows (proved in [AS02]).

(1) Both filtrations are left continuous, with rational breaks.
(2) For 0 < a < 1, GY%,, is the inertia subgroup of G (inverse limit of

nlog
inertia subgroups over finite subextensions).
3) GLr = @G is the wild ramification subgroup of G (inverse limit of
nlog log g p

wild ramification subgroups over finite subextensions).

(4) For any a > 0, we have inclusions Gﬁf;é C Gl € GYyog (which are

strict inclusions if K is not perfect).

(5) If K is perfect, we have Ggl'gé = G, = G for all a > 0; here (G“) is
usual upper ramification filtration.

(6) If K'/K is a finite unramified extension, then both filtrations on G-
are induced by those on G.

(7) If K'/K is a finite tame extension with e(K'/K) = m, then (G/)jgg =
(Gk)iog for any a > 0.

(8) If K'/K is any finite extension with e(K'/K) = m, then (Gx/)j5g C

(GK)iog for any a > 0.

The following is a typical example of ramification breaks.
6.1.1. Example. Let K = K((r)) be an equal characteristic complete discrete

valuation field and let L = K(z) be an Artin-Schreier extension given by
2P —z = an™ " for a € K[n]* and n € N. We assume that the generator z is



RAMIFICATION OF HIGHER LOCAL FIELDS 25

chosen so that 7 is minimal (see §2). The Galois group Gal(L/K) is isomorphic
to Z/pZ.

(1) If pf n, then we have bpiog(L/K) =n+ 1 and biog(L/K) = n.
(2) If p|n, then we have biog(L/K) = bniog(L/K) = n.

Another important property of these two upper ramification filtrations is
the integrality of the associated Artin and Swan conductors. For a finite dimen-
sional representation p : Gxg — GL(V) with finite image, we put buiog(p) =
butog (V) 1= bniog(L/K) and biog(p) = biog(V) := biog(L/K), where L is the
finite extension of K corresponding to the kernel of p. Under very mild tech-
nical restrictions, these ramification filtrations enjoy the following Hasse—Arf
property, as proved in [X10, X12a].

6.1.2. Theorem. Assume either K is of equal characteristic, or p > 2 and
K is not absolutely unramified (i.e. p is not an uniformizer). Let p : Gx —
GL(V) be an irreducible representation with finite image. Then the Artin con-
ductor Art(p) := bniog(p)-dim p and the Swan conductor Sw(p) := biog(p)-dim p
are integers.

6.2. Refined Artin/Swan conductors. It is a natural question to ask
whether one can obtain information about the graded pieces of the ramifi-
cation filtrations. The following theorem is proved with some restrictions in
[AS03, Sa09, X12a] and, in full generality, in [Sal2].

6.2.1. Theorem. The graded pieces gr*G?

nog = Gfﬂog/Ga+ (@ > 1) and

nlog

grGr, = Gﬁ)g/Gﬁfg (a > 0) are abelian groups of exponent p. Moreover,
there is a natural injective homomorphism

rsw : Hom(gr?Gh,, Fp) — Q}QK(log) R0 m;(“alg/m(l;ﬁy, a € Qsyg,
where Q%/)K(log) = Q%/)K + OK‘?—KIf, mo G, = {7 € K8 |y (x) > —a}, and
m?ﬁ? = {z € K¥8|vg(z) > —a}.

Following Kato, the map above is called the refined Swan conductor homo-
morphism. When K is of equal characteristic, there is an analogous natural
injective homomorphism, called the refined Artin conductor homomorphism

. a)+

1 _ —
rar: Hom(graGnlogan) - QOK Kok mKaalg/m(Kalg S Q>1'

See [X12b] for more details. The analogous refined Artin conductor homomor-
phism is also expected in the mixed characteristic case, using a variant of the
argument of [Sal2].
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When K is finite and a a positive integer, the rsw map is compatible with
the natural homomorphism in local class field theory in the following way:

Hom(gr*G?, ,F,)

Hom((G**)*/(G**)**,Fy) log? P

LCFT rswl

logV

Hom (U, ic /Ua 1,5, Fp) ——= Qy_(log) ®0,, my, /mcir”

Kalg

where G® denotes the abelianized Galois group with the induced filtration, the
left vertical map is the isomorphism from the local class field theory, and the
map log" is characterized below. For a homomorphism 7 : Us i /Ust1,x — Fp,
its image log" (n) is the element wnﬂ;(ad;—;‘ for w, € K such that

n(l+zrf) = tri (zwy).

6.2.2. Example. Continuing with the setup in Example 6.1.1, we fix a gen-
erator z. Fixing the isomorphism K = K((7)), we have
—drw

Qb, o, K = QI? @& Kdr and Qp, (log) ®o, K = Q%@ K?

Let da be the usual differential of @ in Ql?; it is zero if and only if @ is a pth
power in K. We can also view this element in Q}% ®o, K and Q%/)K (log)®0, K
using the direct sum decomposition above.

There is a natural isomorphism p : Gal(L/K)—TF, given by o—0o(z)—z€F,.
This p induces a homomorphism from grPies(5/K )G;(,nlog or grhies(L/K) ;(,log
to I, which we still denote by p. Then the images of p under the refined Artin
and Swan conductor homomorphisms are as follows.

In case (1), rar(p) = 7 " 'nadr and rsw(p) = 7r_"(nad?7r + da).

In case (2), rar(p) = 7 "da and rsw(p) = 7w "da. (They are not literally
the same because they live in different spaces.)

One can check that the refined Swan and Artin conductors do not depend
on the choice of z.

6.2.3. Question. When K is perfect, one can check that the refined Swan
conductor homomorphism is in fact an isomorphism. (This is a folklore result,
and, to our best knowledge, it has not appeared in the literature.) When K
is not perfect, is the refined Swan conductor homomorphism still an isomor-
phism? What about the analogous refined Artin conductor homomorphism?
This appears to be a very deep question regarding the structure of the Galois
group Gg.
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6.3. Multi-index filtration for higher dimensional fields. Using the
refined Swan conductor, one can naturally associate a multi-index (upper)
filtration for an m-CDVF K as follows. We will only treat the case with loga-
rithmic ramification filtration and when the last residue field kg is perfect to
simplify the notation; one can easily modify the construction to adapt to the
general case and to the non-logarithmic case.

Let K be an m-CDVF with the first residue field k,,_;. Assume the last
residue field kg is perfect. We fix a system of local parameters ty,...,%,. In
this case, we have

- dt;
Q%’)K (log) ®(9K k/’mfl = 691 k/’mflt_i-
1=
For iy, € Qs¢ and for A =>"", ai‘i—? € Q%/)K (log) @0 t,}imki}il, we set
Vieg(A) = min{v(a),...,v(an)}.

This gives a multi-index valuation on Q}QK (log) ®oy tyim k:sf 1
We put Qg = {i € Q" | i, > 0}. For i = (i1, ...,4,) € Q¥y, we can define
a filtration on G := Gi by the following characterization:

G}Og ={o € Gfgé | x(0) =0 for all x : grimeog — Fp

such that vieg(rsw(x)) > —i}.

6.3.1. Question. When K has finite last residue field, does this multi-index
filtration on G3° agree with the one defined by (12) (with [ = 1), which uses
the Milnor K-group KiXPK? This amounts to comparing the refined Swan
conductor homomorphism with the one defined by Kato for characters of G%?.
The comparison is expected by experts. In the equal characteristic case, this is
proved in [AS09] and also appears implicitly in Chiarellotto and Pulita [ChP].
But in the mixed characteristic, to our best knowledge, it has not appeared in
the literature.

6.4. Construction of the filtration d’aprés Abbes and T. Saito. Now
we proceed to describe the construction of the upper ramification filtrations
in the general case developed by Abbes and T. Saito [AS02].

Abbes and T. Saito made use of rigid analytic spaces. (We refer to [BGR]
for basics of rigid analytic spaces.) Their construction is motivated by the
following crucial but easy proposition in the case of perfect residue field.

6.4.1. Proposition. Let K be a complete discrete valuation field with perfect
residue field. Let L be a finite Galois extension of K with Galois group Gr, k-
We know that Oy is generated as an Ok -algebra by one element . Let P(u)
denote the minimal polynomial of x.
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(i) Let b(L/K) be the highest ramification break as defined just before Examp-
le 1.1.1. We assume that L/K is not unramified so that b(L/K) > 0. Then

b(L/K):;( S wlo(s)—x)+  max vL(a(x)—x)>.

€(L/K) O'EGL/K»’U'¢1 UEGL/KWU#l

(ii) Consider the rigid analytic space for each positive rational number a:
X = {u e K¥8 . lu| <1, |P(u)] < ]ﬂK]“}.

The space X* has [L : K] geometric connected components if and only if
a>b(L/K).

Proof. The first statement is straightforward if one unwinds the definition of
the upper ramification filtration.

A rigorous proof of (ii) can be found in [AS02, Lemma 6.6]. We will give a
rough idea of why this is true. The picture here is that, if a is very large, we
confine ¢ in some very small neighborhoods of the roots of P(u) = 0, or equiv-
alently the conjugates of x. The rigid space X is expected to be geometrically
a disjoint union of very small disks centered at each of the conjugates of x.
In other words, X? should have [L : K] geometric connected components. In
contrast, when a — 07, the condition |P(u)| < |m|? is significantly weakened,
and X is almost the whole disk |u| < 1.

When the rational number a decreases from a big starting value, the disks
grow larger. Consider the first moment such that some of the [L : K] disks
clash together, and the number of geometric connected components decreases.
We need to show that the rational number a at this moment is exactly the
highest ramification break b(L/K). Indeed, the cut-off condition is obviously
lu — z| < mingec, 041 |0(z) — z| (or with a conjugate of z in place of z).
This implies that |u — o(z)| = |o(z) — z| for o # 1. Thus

Pw)= [ kw-o@l=lu-z [] lo@) -2 <|rx/"=5.

U'GGL/K U—GGL/K

In fact, this explanation can be turned into a complete proof if it is argued
more carefully. O

Imitating this description in the general case, Abbes and T. Saito gave the
following construction. Let K be a complete discrete valuation field and L
a finite Galois extension of K. Suppose that Op is generated by z1,...,xz,
as an Ofg-algebra. Then we may write O as the quotient Ogl[uy,...,u,|/
(fi,---, fs) =~ Or, where the isomorphism sends u; to z;, and {fi,..., fs} is
some set of generators of the ideal. For a positive rational number a, consider
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the following rigid analytic space

<1, up ] < 1
a =AU = (UL, ., Up) € KalgTi ‘UI’\ ’ N }
Bpac= (= ) € OB el ) & el
Put G = Gk for simplicity. Inspired by Prop. 6.4.1, we want to define the
(upper) ramification filtration Gfﬂog of G so that X7, has [L : K] geometric

connected components if and only if a > bylog(L/K). It is not difficult to see
that the space X7} /K does not depend on the choice of f;’s, and the set of

geometric connected components 7§ " (X ¢ / ) does not depend on the choice

of u;’s (because adding a new generator is equivalent to changing X¢ /K toa
fiber bundle over X¢ - whose fibers are disks). Thus, our construction is well
defined, depending only on L.

Abbes and T. Saito [AS02] prove the existence of such ramification filtra-
tion using certain abstract framework of “Galois functor” by studying functors
for all rational a that take every finite Galois extension L of K to the set of

geometric connected components m§ (X ¢ /x)- They call this filtration the

non-logarithmic ramification filtration Gfﬂog for a € Qx¢. They also give a log-
arithmic variant of the construction which defines the logarithmic ramification
filtration G, for a € Q. For details, we refer to [AS02]. For later reference
when comparing different definitions of the filtrations, we will refer to these
two filtrations as the Abbes—Saito filtrations.

The following comparison theorem is proved partially in [ChP] and in full

in [AS09].

6.4.2. Theorem. Kato filtration on G®® agrees with the filtration induced
from the Abbes—Saito non-logarithmic filtration on G = Gg. Moreover, the
refined Swan conductor defined in [Ka89] is compatible with the refined Swan
conductor homomorphism defined in Theorem 6.2.1.

We also mention that Abbes—Saito’s construction can be applied to finite
flat group schemes over Ok and it defines a ramification filtration on the group
schemes. For progress along this line, see [AM, Hal2, Hal2+]. This result may
be used to prove the existence of canonical subgroups for a p-divisible group
with small degree; see [Ti].

6.5. Construction of the filtrations by p-adic differential equations.
Another useful equivalent definition of the ramification filtration is based on
the theory of p-adic differential equations.

We first consider the case when K = K((r)) is of equal characteristic and
K is perfect. Put F = W(K)[%] Consider the following bounded Robba ring,
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for r € (0,1) N p@:

Rﬁdd = { Z anTn

nel

an € F,|a;| is bounded, and lim |a;| - 1 = 0}.
1——00

It is the ring of analytic functions on the annulus » < |T| < 1 which take
bounded values.

Let V be an irreducible p-adic representation of G = G i with finite im-
age. The theory of Fontaine (see, e.g., [Ke05, Section 4]) associates V' with a
differential module over R 44 for some positive rational number r sufficiently
close to 0, that is a finite free module 7 = Fy over R{ 44 equipped with a
connection

ViF = 7F OR} 44 Q,}z{)dd/F.

This is equivalent to giving a derivation 0 = diT on F (satisfying Leibniz rule).

This construction gives the access to the full power of the theory of p-adic
differential equations in the study of the ramification of G. For r' € p@ with
' € [r,1), we use F(T)) to denote the completion of F(T') with respect to
the r'-Gauss norm, that is the norm extending the following norm | - |,y on
F[T):

n _ m
‘%anT ‘(T,) = glga({]an\r .

We pick a norm |- |£ /) on FU) .= Forr  F(T)") and consider the spectral

bdd
norm
T nil/n
‘a‘spf,(r/) = nlgrolo ‘a F(r')?

where |0"| £ () is the operator norm of 0". The spectral norm does not depend

on the chosen norm |- |z ) on F (™). This is one of the key invariants of a
p-adic differential equation. It was explained by Kedlaya in [Ke05] (based on
the work of Christol-Mebkhout, Crew, Matsuda, Tsuzuki) that the highest
ramification break b(V') has the following characterization by spectral norms:

for ' sufficiently close to 17, |8l 7 () = p V=)L ()=o)

A generalization of this approach without the perfectness of K is introduced
by Kedlaya in [Ke07]. Assume that K has a finite p-basis (as the general case
reduces to this case). The construction works formally the same except the
following changes:

e The field F is taken to be the fraction field of a Cohen ring of K; here
the Cohen ring is an absolutely unramified complete discrete valuation
ring with residue field K; we refer to [Wh] for a functorial construction
of Cohen rings.
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e We have the derivation gy = % as well as other derivations dq,...,0d,

coming from a chosen p-basis of K. Using this, Kedlaya defines the log-
arithmic differential ramification filtration such that for r’ sufficiently
close to 17,

max {]80181)7;’(7“/) . 7"/, ‘allsp,]—j(r’)a RN ‘an’sp7]:’(r/)} = pil/(pil) . (T/)iblog(v),

(13)
where, as before, bjog(V) is the highest ramification break defined by
the logarithmic differential ramification filtration.

A different normalization in the above formula by removing the factor 7’ in
the first term of (13) gives rise to the differential non-logarithmic ramification
filtration.

The differential ramification filtrations enjoy the following properties.

(1)

(2)

Kedlaya [Ke07] proves the Hasse—Arf property (as in Theorem 6.1.2),
using the integrality of Newton polygons. (One can alternatively de-
duce this by reducing to the perfect residue field case.)

It is proved in [X10] that Kedlaya’s differential ramification filtration
agrees with Abbes-Saito filtration; this then proves Theorem 6.1.2 in
the equal characteristic by transferring the Hasse—Arf property through
the comparison. Same result for one-dimensional representations was
priorly obtained by Chiarellotto and Pulita [ChP].

In the equal characteristic case, [X12b] realizes the refined Swan con-
ductor homomorphism using p-adic differential modules; this is re-
lated to the eigenvalues of the matrices for the differential operators
dy, - .., 0n, acting on an appropriate basis of F. [X12b] further relates
the refined Swan conductor homomorphism to the variation of Swan
conductor (see Subsection 10.2).

When K is of mixed characteristic under some mild condition, it is
proved in [X12a] that one can “fake” the Robba ring construction above
and apply recent results [KelOa, KeX] on p-adic differential equations
to deduce the Hasse—Arf theorem.

6.5.1. Question. Can we realize the refined Swan conductor homomorphism
in the mixed characteristic case, using certain fake Robba ring construction?

6.6. Geometric construction based on Abbes—Saito’s original defini-
tion. Soon after the introduction of Abbes—Saito filtrations, Abbes and Saito
gave the following geometric reinterpretation of the definition, which aims at
a more global application.

To start, we first assume that K is of equal characteristic and satisfies the
following condition:
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(Geom) There exist a smooth scheme X over a field k and an irreducible
divisor D smooth over k with the generic point 7, such that K is isomorphic
to the completion of k(X) with respect to the valuation given by 7.

Properties for a general equal characteristic field K may be reduced to the
case with this condition by taking certain limit.

Now, given a finite dimensional irreducible [-adic representation p of G,
we may realize it as an l-adic sheaf F = F, over U := X\D, possibly after
shrinking X. Using vanishing cycles, T. Saito [Sa09] gives a construction that
can detect the highest logarithmic ramification break b := biog(p), which we
review here.

Let Zp denote the ideal sheaf for the closed immersion D C X. Let (X x X)’
be the blow-up of X x X along D x D. Let (X x X )~ denote the complement
of the proper transform of (X x D) U (D x X). Let @ : (X x X)~ — X
denote the natural projection to the first factor. The diagonal embedding
U — UxU C (X xX)~ extends to a natural embedding é : X — (X xX)™. Let
Jx denote the ideal sheaf for this closed immersion. Let j : UxU — (X x X)~
denote the natural inclusion.

For a € Qxp, we use (X x X )(@) denote the normalization of the scheme
associated to the quasi-coherent sub-O(xx x)~-modules

Z @*(Ox(|lna|D)) - TR C j« Ouxy. (Here, |- is the floor function.)
neN

When a is a positive integer, this is one of the open charts for the blow-up of
(X x X)~ along the ideal sheaf 4*(Zp)® + Jx.
We use the following notation for morphisms:

U ! X

l(s lg(a)
()

UxU—j>(X><X)(“)

Put H := Hom(pr3F, priF). T. Saito [Sa09] proves that

6.6.1. Proposition. The highest log ramification break biog(p) < a if and only
if the base change map

5@ D9y i End(F)
s an isomorphism at the generic point n of D.

When the condition of the proposition is satisfied, the restriction of jia)’H
on the complement (X x X)(@\(U x U) is a direct sum of the Artin-Schreier
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sheaves defined by certain linear forms. These linear forms give rise to the
refined Swan conductor homomorphism. See [Sa09] for more details.

When the field K is of mixed characteristic, T. Saito [Sal2] imitates the
equal characteristic construction to make sense of X xj X using infinitesimal
deformations. It would be interesting to see if one can put T. Saito’s construc-
tion in a more global setting for complete regular rings of mixed characteristic,
and obtain global results similar to those in [Sa09].

6.7. Alternative constructions of upper filtrations. We now explain
some other constructions of upper ramification filtrations.

Borger [Bo04, Bo02] constructs a non-logarithmic ramification filtration us-
ing a “generic residual perfection” process. His result is based on the following
observation: taking O = F,(z)[n] as an example, a naive idea would be to
reduce the definition of ramification filtrations to the case of perfect residue
field, by adjoining p®°-roots of . Note that z should be thought of as a lift
of the z of the residue field. But there is no canonical such lift, as one could
choose, for example, = 4+ 7 instead and adjoin all p>-roots of x 4+ 7. Borger’s
idea is to introduce an indeterminate w; and consider F,(z,u;)[n]; he then
adjoins all p>°-roots of z + u;m. Next, he has to deal with p-power roots of u;.
For this, he adjoins another indeterminate us and all p*°-roots of u; + uom.
Continuing this process and “taking limit” gives a “generic perfection of Og™”.

To present this observation systematically, Borger showed that there is a
moduli space Spf(A") that parameterizes the ways of modifying Ok so that
its residue field is perfect. In the example above,

A% = Fp(z)[ur, ug, . . |[7][(& 4+ wrm) /27 (uy + ugm) /P70

Let A% denote the the completion of A" at the generic point of its special fiber.
Then Q(A®) is a complete discrete valuation field with perfect residue field.

We may then use the natural map Gk — Gg(ae) to define an (upper) ram-
ification filtration on G'x as the preimage of the ramification filtration on the
latter group. Borger [Bo04] proves that the Artin conductor given by his non-
logarithmic ramification filtration is compatible with the “non-logarithmic”
(Artin-like) version of Kato conductor. It is later proved in [X10] that, when
K is of equal characteristic, Borger’s (non-logarithmic) filtration agrees with
Abbes-Saito non-logarithmic filtration. In the mixed characteristic case, a sim-
ilar argument used in [X10] relates Abbes—Saito non-logarithmic filtration with
a variant of Borger’s filtration (see [X12a, Remark 3.2.14]). It would be inter-
esting to see if the two filtrations are exactly the same.

Boltje, Cram and Snaith (see [BCS], [Sn, 6.3]) define a conductor in the
general case by means of explicit Brauer induction. This results in a conductor
compatible with Swan conductor and Kato—Swan conductor in the cases where
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those are defined. As of yet, we are not aware of any attempt to compare the
approach of Boltje-Cram—Snaith with other constructions mentioned above.

One more approach is initiated in [Z13, Z14]. It is based on consideration
of composites of a given finite extension with various (infinite) elementary
abelian extensions.

6.8. A generalization of the theorem of Deligne. As it was discussed in
Subsection 3.10, one expects to be able to associate quotient of Galois groups
to truncated discrete valuation rings. More concretely, consider two complete
discrete valuation fields K and K’ and assume that there exists b € N such
that there is an isomorphism O /7% Ok ~ O/ /nb., Ok as rings. Unlike in
Subsection 3.10, we do not assume that the residue field K = K is perfect.

6.8.1. Question. Does this isomorphism of rings still imply that
b ~ b b ~ b
GK/GK,nlog = GK’/GK/7nlog and GK/GK,log = GK’/GK/710g?

Are these isomorphisms of quotient groups canonical? Moreover, are they com-
patible with the refined Swan—Artin conductor homomorphisms?

In the non-logarithmic case, it appears that Hiranouchi and Taguchi [HT]
have started a project towards proving the isomorphism of quotients of Galois
groups. See also the survey paper [Hi].

6.9. Vector bundles with irregular singularities. It is quite well known
that there is a strong analogy between representations of G (when K is
perfect) and differential modules over C((7')), that is finite dimensional vector
spaces V over C((T')) equipped with a derivation 9 = % (i.e. d(av) = d(a)v+
ad(v) for a € C((T)) and v € V). Such a module is called regular if TO
preserves a C[T]-lattice A of V. For P € C((T)), we can define a rank one
differential module E(P) = C((T')) - e such that d(e) = Pe.

The Turrittin-Levelt-Hukuhara Theorem (see, e.g., [KelOa, Section 7.5])
says that there exists n € N such that we have a decomposition

V ®c(ry CUTY™) = @], V;,

where each V; is of the form V; = E(P;) ® R; for an element P; € C((T'/™))
and a regular module R; over C((T''/™)).

The analogous invariant of ramification break is just max{0, —vc((7y) (F)}-
We define the irregularity of V' to be

Irr(V) := Z dim V; - max{0, —ve () (5%) }-
1=1
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We can give an interpretation of this invariant in terms of the spectral norms
of the differential operators 0. For details, see [KelOa, X12b].

In the general case when K = K((T)) with K of characteristic zero, there
might be additional derivations 9;,...,0, on K. For example, when K =
C(z,y), we may consider the derivations 9; = % and 0y = d%' We consider

a differential module V over K ((T)), that is a finite dimensional vector space
K((T)) equipped with commuting actions of dy = %, O1,...,0,. When V is
irreducible, one can define the irregularity of V' by taking the maximum among
all irregularities computed by the spectral norms of all differential operators.
For general V, its irregularity is defined to be the sum of the irregularities over
all Jordan—-Hélder constituents. For the details, we refer to [X12b].

Similarly, one can define a refined irregularity as an analog of the refined
Swan conductor for Galois representations. This is explained in [X12b].

§7. Elimination theory

7.1. The expectations. We see that the Kato—Swan conductor as well as
the Abbes—Saito ramification filtration work perfectly in all the situations
where one needs the ramification invariants that “live downstairs”, i.e., for an
extension L/K, those invariants that are more closely attached to K than to
L. These include multiple questions related to the absolute Galois group of a
complete discrete valuation field, or, in algebraic geometry, to the étale site of
an algebraic or arithmetic variety.

In other words, probably we have the best possible “upper ramification
filtration”.> However, in general we cannot recover the usual (lower) ramifica-
tion filtration from it. There are no Hasse—-Herbrand functions, and we cannot
write down any analogs with functorial properties as in Subsections 3.2-3.5.
The reason for this is rather fundamental: any single ramification filtration as
well as any theory of Swan-type conductor describes the ramification of an
extension of degree p with just one number. But we saw in the example in §4
that a “comprehensive” ramification theory should provide more information
in this case. Indeed, in (11) we have to know not only n and N but also m.

Also, we have no formula for the order of different (or depth)* in terms of the
upper breaks which would be a substitute for (10). The best possible estimates
in the case of an n-dimensional local field (with finite last residue field) are

3The terminology is absolutely misleading! The upper ramification breaks live downstairs,
and the lower ones live upstairs.

4The order of different and the depth can be considered as invariants that “live in the
middle”.
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given by Hyodo inequalities (see [Hy, Th. (1-5), Prop. (3-4), Ex. (3-5)]):

-0 Y gy <P, (14)

> P P

where jr,/x (1) are defined in (12).

A possible distant goal for further investigations of ramification in the im-
perfect residue field case could be to construct a certain system of invariants
Y(L/K) for any finite extension L/K which would completely describe the
ramification of L/K. This vague desire can be made more specific by listing
at least the following requirements.

(1) “Naive” ramification invariants (ramification index, order of different,
genome, Artin and Swan ramification numbers) as well as other important
invariants (such as Abbes—Saito conductor) can be expressed in terms of
Y(L/K).

(2) Ramification of intermediate extensions (i.e., 3(L/M) and L(M/K))
can be expressed in terms of X(L/K); reasonable base change properties in
spirit of Prop. 3.3.2 are available.

(3) Local terms of appropriate global formulas can be expressed in terms of
Y(L/K).

Of course, it would be nice to have more explicit set of requirements, which
could possibly take the form of a certain “axiomatic ramification theory”.
However, we have a lot to learn at phenomenological level before this becomes
feasible.

7.2. Background. Here we discuss a theory producing some additional ram-
ification information that can be organized in analogs of the lower and upper
filtrations. The approach, orginated in [Ka87], is based on two observations.

1. The Herbrand theorem (5) is true not only in the classical case but, more
generally, in all the monogenic cases, i.e., when O, = O [z] for some z. Conse-
quently, the ramification invariants of monogenic extensions, defined in a usual
manner, possess all the usual functorial properties. The inverse statement is
also true; more precisely (see [Sp99, Prop. 1.5.2]).

7.2.1. Proposition. Let L/K be a finite Galois p-extension. Then the fol-
lowing properties are equivalent:
(1) Or = Oklx] for some ;
(ii) for every mormal subgroup H of G the Herbrand property (5) holds;
(iii) the Hilbert formula holds:

vr.(Drx) = ZiG(U) = Z(|Gi| —-1).

o#£1 >0
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In [Sp99] such extensions are called well ramified. There are three types of
well ramified extensions.

Case 1. All the extensions with separable L/K.

Case II. All the weakly unramified extensions such that L/K is generated
by 1 element. (In particular, if K is a two-dimensional local field, or, more
generally, if [K : K] = p, then all weakly unramified extensions of K are well
ramified.)

Case I1I. Those well ramified extensions that belong neither to Case I nor
to Case II. Spriano showed that for any L/K from Case III there exists an
intermediate field M such that M/K is in Case I, and L/M is in Case II. A
general description of Case III extensions was given in [HLF, Sect. I, §18] and
[Sp00].

For us, the above remark on two-dimensional fields is important.

2. Let L/K be any finite Galois extension of complete discrete valuation
fields with imperfect residue fields of characteristic p > 0, and let k£ be a con-
stant subfield of K, i.e., a maximal complete subfield of K with perfect residue
field. (If char K = 0, such a subfield is unique.) Epp’s theorem on elimination
of wild ramification [E] (corrections in [P] and [Kuhl]) asserts that there exists
a finite extension k’'/k such that k'L/k'K is weakly unramified. The paper
[KZ] contains various refined versions of Epp’s theorem, with applications to
classification of higher local fields.

7.3. Construction. Now we are ready to describe the construction from
[Z03] and [HLF, Sect. I, §17]. For a given complete two-dimensional® discrete
valuation field K, fix a constant subfield k. An extension L/K is said to be
constant if L = k'K and almost constant, if L C k'K, where k' /k is a finite
extension, and K, /K is an unramified extension. We say that a field L is
standard if a prime element of its constant subfield is also a prime element
of L. The choice of a constant subfield k£ in K determines a constant subfield
[ in L which is algebraic over k.

For any finite Galois extension L/K denote by L the inertia subfield in
L/K and by L./K the maximal almost constant subextension in L/K. The
idea is to induce:

(1) the ramification filtration on Gal(L./Lg) by the filtration for the corre-
sponding constants subfields;

(2) the ramification filtration on Gal(L/L.) by the filtration on an iso-
morphic group Gal(k’'L/k'L.), where k'/k is a finite extension that makes
Gal(k'L/K'L.) weakly unramified by Epp’s theorem (and even ferocious in
view of the definition of L.).

5i.e. such that [K : K'] = p.
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Namely, introduce a set
I={-1,0} U{(c,9)|i € Q,i>0}U{(c,00)} U{(i,4)|i € Q, i >0}
with linear order
—-1<0<(e,4) < (i,7) for any 1, j;
(c,i) < (c,j) for any i < j;
(i,7) < (i,7) for any i < j.

This will be the index set for lower and upper numbering of new ramification
subgroups.

Let G = Gal(L/K). We put G_; = G, and denote by G the usual inertia
subgroup in G.

To introduce subgroups G ¢ ;) = Ge,i, we consider first the case when L./K
is constant and contains no unramified subextension. Then L. = [K, and we
have a natural projection

p: Gal(L/K) — Gal(L./K) = Gal(l/k) = Gal(l/k)o.

Then we put Ge; = p~'(Gal(l/k);). In the general case take an unramified ex-
tension K'/K such that K'L/K' contains no unramified subextension, and the
maximal almost constant subextension in K'L/K’ (i.e., K'L./K') is constant.
We put G¢,; = Gal(K'L/K')¢ ;. Next,

Geoo = Gal(L/Ly) = Ge

for m big enough.

Assume that L. is standard and L/L, is ferocious. Let t € Oy, t ¢ 7. We
define

Ge = {g € Gal(L/Lo)lorc(g(t) — 1) > i} (15)

for all ¢ > 0.

In the general case choose a finite extension I'/l such that 'L, is standard
and e(I'L/l'L.) = 1; this is possible by Epp’s theorem. Then Gal(I'L/l'L,) =
Gal(L/L.), and I'L/l'L, is ferocious. We define

Gey = Gal(l'L/I'Le)es = Gal(l'L/I'K )

for all 4 > 0; these groups are independent of the choice of I’ since we used vg
(and not vyz) in (15).

This gives a well-defined lower ramification filtration on GG indexed by I; one
can define Hasse-Herbrand functions from I to I with usual properties and,
consequently, construct the upper filtration. The compatibility with subgroups
and factor groups mimics that of the classical case, and a ramification filtration
for infinite Galois extensions is defined.
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One can note also that we obtained filtration (on finite Galois groups) which
factors G;/G;4 are abelian for ¢ > 0 (even elementary abelian for ¢ > 0). This
would not be true if we did not consider the contribution of c-part. For a 2-
dimensional local field, one could also define a refined I»-filtration using rank
2 valuations in the i-part [Z03, §4].

7.4. Further properties. There exists also a partial result on compati-
bility with the higher class field theory. Namely, for an equal characteristic
2-dimensional local field K with finite residue field, one can define explic-
itly an Ip-filtration on K°PK which coincides with the inverse image of the
ramification filtration on Gal(K?"/K) with respect to the reciprocity map
O : Ky K — Gal(K*/K), see [Z03, §6].

It is not so easy to do the same in the mixed characteristic case because of
the more complicated Gal(K?®"/K) and the presence of p-torsion elements in
K;OPK . In particular, the following question is of interest.

7.4.1. Question. What is Cx = 0 (Gal(K**/K2P))?

By the results of Miki [Mik74], any extension of K with the Galois group
Z,, is almost constant. This means that K" /K, the compositum of all Loy-
extensions, is a subextension of K2P /K. On the other hand, K2P = £ab gabur —
k2P Kabtr - and it is easy to see that KUK = gl Kabir where K2Pur/K
(resp. K*'/K) is the maximal abelian unramified (resp. tamely ramified)
extension of K. Therefore,

Ga;l(K?b/KFKa‘b7tr) — Gal(kabKab,tI‘/k,FKab7tr)
~ Gal(kab/krkab,tr)
~ torsion subgroup in Uy 4

by usual local class field theory.

Let Tx be the topological closure of the p-torsion subgroup in K;OPK .
Since there is no p-torsion elements in KT K3 /K  we have O (Tx) C
Gal(K?P /KT K1), From the explicit description of generators of K3™P K /Tx
(see [Z97, 108]), it is clear that even O (Tx) = Gal(K?»/KT K2b'r), This
means that Ck should be a subgroup of index p™ in Tk, where p™ is the or-
der of p-torsion subgroup in k* (or in K*). However, what are the generators

The above described ramification filtration gives a way of generalizing the
“anabelian yoga” (see Subsection 3.9) to higher local fields. Abrashkin [Abr02]
generalized the above construction from 2-dimensional case to n-dimensional
local fields, introducing ramification theory that depends on the choice of -
dimensional subfields K; (1 < i < n — 1) in the given n-dimensional local
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field, and proved a complete analog of his 1-dimensional result (announced in
[Abr02], full proof in the equal characteristic 2-dimensional case in [Abr03]).

Next, Abrashkin used his generalized ramification theory to develop an anal-
ogous functor of field of norms for higher dimensional local fields, see [Abr07].
Note that there exists further generalization of the field of norms functor to
the case of arbitrary imperfect residue field with finite p-basis by Scholl [Sch];
his construction does not use any kind of higher ramification theory.

Despite these nice properties, the [-ramification theory is quite far from
being a “Traumverzweigungstheorie”. In particular, even for an extension of
prime degree its [-ramification break does not determine its depth of ramifica-
tion and even its genome (“W?” or “F”). For example, let K = F'((¢))((7)) and
k = F((r)), F being a finite field. Assume that L/K corresponds to the Artin-
Schreier equation 2P —x = 7" +t7~P™, where m, n are positive integers. Then
the I-break of L/K is m for any n, whereas di (L/K) = ijl max{n,pm}, and
L/K is wild if and only if n > pm.

However, in the equal characteristic case one can vary the constant subfield
Ek of K thus collecting more information on ramification. For example, if L/ K
is wild of degree p with the Swan number sy, then, for some choices of k, the
I-break of L/K is (c,s) and necessarily s = s¢. In this example m is not an
invariant of L/K. However, if in the example of §4 we consider only such &
that the I-break of Ky/K is some (c,s) (clearly, s = N), then the I-break
of K1/K will be (i,m/p). Therefore, the knowledge of I-breaks of K;/K and
K5 /K for all choices of k determines the ramification of K1 Ko/ K.

7.4.2. Question. Can we construct a powerful ramification theory for equal
characteristic 2-dimensional fields by varying the constant subfield?

7.4.3. Question. Can we use this approach even in the mixed characteristic
case using truncations from [De84]7

§8. Semi-global modeling

Now we describe one more approach to description of ramification in the
imperfect residue field case. This approach goes back to Deligne who sketched
a proof of a Grothendieck—Ogg—Shafarevich formula for surfaces in his famous
letter to Illusie [De76].

8.1. Background. We recall some starting points of Deligne’s program. Let
F be a locally constant étale Fj-sheaf of finite rank on U, where U is the
complement to some divisor D on a smooth projective surface S over an alge-
braically closed field of prime characteristic p # [. In order to understand the
ramification data associated with F at the generic point of a component Dy
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of D, Deligne considers various regular arcs C transversal to Dy and studies
the restrictions of F to these arcs. It is expected that the Swan conductor
of Flc¢ (at the point where C meets Dy) depends only on the jet of C of cer-
tain order r. Thus, we can consider the Swan conductor as a function on the
space 11, of r-jets of regular arcs transversal to Dy; this space has a natu-
ral structure of a vector bundle over Dy. Next, this function is expected to
be lower semi-continuous; in particular, it should take its maximal value over
certain Zariski open subset W of T7 ;. The next claim is that the complement
of W has pure codimension one in 77, i.e., is a union of several irreducible
hypersurfaces. The further work is based on geometry of these hypersurfaces
including intersection theory.

Some of these facts were proved in [La] under assumption of “absence of
ferocious ramification”. This means that the locally constant sheaf F is trivi-
alized in some finite extension of k£(S) such that all extensions of residue fields
are separable. In particular, the semi-continuity of Swan conductor has been
proved under this assumption.

Brylinski in [Br] considers a cyclic p-extension of the function field of a sur-
face S over a field of characteristic p given by the Witt vector z = (zq,...,z,—1).
He assumes that the branch locus Dy is smooth at a certain regular point P
of § and the valuations of all x; at the generic point of Dy are either posi-
tive or prime to p. (This condition implies absence of ferocious ramification if
r = 1 but not in general.) Under this assumption he proves that, for all curves
C transversal to Dy at P, the Swan conductors of corresponding extensions
of k(C) are equal, and their common value is Kato-Swan conductor of the
extension of the 2-dimensional local field k(S)p,,p corresponding to .

Consider a cyclic extension L of degree p of k(S) as above such that the
branch locus Dy is smooth with one component, and the ramification at this
component is wild. We see from the papers of Laumon and Brylinski that in
this case for all curves C' transversal to D at a fixed point, the corresponding
ramification numbers will be the same (and equal to the ramification number
of L/k(S)). However, in order to approach a more comprehensive description
of ramification in the sense of Subsection 7.1, it appeared useful to consider
curves which are tangent to Dy of certain fixed order (and smooth).

8.1.1. Example. Let k be algebraically closed, chark = 2, S = A? with
coordinates t,u, S’ the normalization of S in the Artin-Schreier extension
Lo /k(t,u) given by

22—z =t (1 4 au),
where « € k. Introducing ¢ = t"z, we see that ¢ is integral over k[t,u] and
Sy = Speck[t,u,t1] is regular, whence S’ = S{. Let O’ be the closed point of
S" above the origin O. (It is unique since O belongs to the branch locus of
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normalization morphism.) Replacing S and S’ with the spectra of completed
local rings at O and O’ respectively, and introducing ¢y = t(1 + au), we arrive
at the homomorphism ¢ : k[tg, u] — k[t1,u] given by

o(to) = t% + t%”“ + terms of higher order.

Notice that the branch locus of ¢ is determined by the prime ideal (ty) of
E[to,u]. Consider a family of curves C on Spec k[tg, u] with the equations

to =u?+ M3 +u’, Nek,

and denote by C{ their pullbacks in Spec k[t1, «]. It is not difficult to calculate
that
dn—3, A#D0,

S(E(C3)/K(Ch)) = {4n 5 A=0

(assuming n > 2). Moreover, let C' be an arbitrary regular curve on Spec k[[to, u]
which is simply tangent to the branch divisor, i.e., with an equation

t():)\gu2+)\3u3+...,

where Ay # 0, and let C’ be its pullback. Then C’ is irreducible; we have
s(k(C")/k(C)) = 4n — 3 if A3 # 0, and s(k(C")/k(C)) < 4n —3 if A3 = 0
(“exceptional hypersurface”). Note that if C' is determined by an equation

t = pou? + psu + ...

in the original coordinates ¢,u, then pus = A3 + ape. This means that the
equation of the “exceptional hypersurface” H, is pu3 = aueo, and thus H,
“detects the .

8.2. Semi-global models. Deligne’s program is intended to compute Fuler—
Poincaré characteristic of an étale sheaf on a surface or, more generally, to
describe ramification of a finite morphism of algebraic or arithmetic surfaces.
However, we can try to use this approach as a source of rich information
about ramification of extensions of 2-dimensional local fields by constructing
geometric “models” for given extensions.

Namely, let h : A — B be a finite k-homomorphism of 2-dimensional regular
local rings with perfect coefficient subfield & of characteristic p > 0. Let p be a
prime ideal of height 1 in B such that B/p and A/h~!(p) are regular. We shall
say that (h, p) is a model for a finite extension of 2-dimensional local fields

L/K, if there exists an isomorphism i of 2-dimensional local fields Q/(B\)p ~ [

—

mapping Q(A)h_l(p) onto K.
We suggest to study ramification in L/K by considering various regular
curves on Spec A and their pullbacks in Spec B. For each such curve C and
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a component of its pullback C’, the field extension k(C’)/k(C) is a finite
extension of 1-dimensional local fields inheriting information on L/K.

Of course, since we are interested only in “ramification in codimension 17,
we have a huge freedom in choosing models for given L/K. (We can make
blow-ups preserving L/K etc.) We hope to describe a class of morphisms h
having as simple structure as possible to make the study of k(C")/k(C) easy
but still providing models for all L/K of interest.

For example, in [Z10] we proposed to study pairs (h, p) such that for some
choice of regular local parameters ¢,u in A and z,y in B with p = (z) and
h~='(p) = (t) the following conditions are satisfied:

(i) ht) = 8- 2=,

(ii) A(u) = - y* mod =z,

oh(t)  oh(t)
(iii) J(t,u) = a,?(mu) o) =7 M, where e, e, are positive integers, e,
or Ay

being a nonnegative power of p, M is a nonnegative integer; d,¢,v € B*.

Such morphisms appeared in [CuP] in the context of resolution of a fi-
nite morphism between regular algebraic surfaces over a field of characteristic
p > 0.

It was proved in [Z10, Prop. 2.4] that an extension of 2-dimensional local
fields L/ K has a model with properties (i), (ii), if the following 2 conditions
are satisfied.

(1) f(L/K) = 1.

(2) Let (ei5)i,j=1,2 be the matrix ramification index for some choice of rank
2 valuations vy, and vg, i.e., VL‘K =Vg - (eij). Then ng(eu, 622)‘612.

Moreover, in this case we have e, (L/K) = e, and f;(L/K) = e,, see [Z10,
Prop. 2.2].

8.3. Initial questions. Let (h, p) be as in Subsection 8.2; denote by Dy the
prime divisor of X = Spec A corresponding to h~!(p). Fix a positive integer
r and consider the set T, of all regular arcs C on X such that (C.Dg) = r.
Assume the above condition (iii); then C is not a component of the branch
divisor, and h*C = C{ +---+ (], where C7,...,C], are distinct prime divisors
of Spec B, and n = n(C) is a positive integer. For each ¢ (1 < i < n), we have
an extension of complete discrete valuation fields with perfect residue fields
k(C!)/k(C). Our plan is to study the ramification invariants of the extensions
k(C!)/k(C) as functions on the set T;.

First of all, we have to check that n(C) and all the ramification invariants
depend only on the jet of C of certain order R = R(r). Having this proved,
we can consider n(C) and ramification invariants as functions on the set T}
of R-jets of arcs from T,.
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Each T, r has a structure of an affine variety over k. Indeed, let t,u be
local parameters of A such that (£) = h~!(p). Then, in view of Weierstraf
preparation theorem, each curve from 7T, has a unique equation of the form

;= —u4 it +oaot?+ ..., r=1,
—t 4 Bpu” + B L >

where «; and (; are any elements of k with an only restriction 3, # 0. If r > 1,
Ty, can be identified with {(By,...,Br) € AF "B, #0}; if r = 1, T, g can
be identified with AZ; see more details in [Z02a].

Next, we would like to check that certain functions of these ramification
invariants are semi-continuous on 7, g with respect to corresponding Zariski
topology. (These functions are reduced to conductors or the order of different if
s =1, and the precise definitions in the general case are still to be understood.)

Some results in this direction are included into the next section.

§9. Some results on semi-continuity

9.1. Artin—Schreier extensions. The paper [Z02a] is devoted to the study
of questions raised in Subsection 8.3 in the case of Artin-Schreier coverings
of the spectrum of a complete 2-dimensional regular local ring (of character-
istic p > 0). Such coverings can serve as semi-global models of Artin—Schreier
extensions of 2-dimensional local fields. However, the setting in this work is
somewhat more general: the morphisms with 2 (transversal) components in
the branch locus are also included into consideration.

More precisely, let A be a regular two-dimensional local ring (not necessarily
complete), char A = p > 0, K = Q(A), m the maximal ideal of A, and & the
residue field which is assumed to be algebraically closed. For a prime ideal p
of height 1, denote by F, the corresponding prime divisor of Spec A. For any
two distinct prime divisors F, Fiy we define their intersection number as

(Fp.Fy) = dimy A/(p +p');

by linearity this definition can be extended to any two divisors C, D with no
common components.

Let L/K be a cyclic extension of degree p, and let B be the integral closure
of A in L. For the sake of simplicity of statements we assume here that the
branch divisor of B/A consists of one smooth component F}, ; for the case of
two transversal components, see [Z02a]. Denote by U, the set of prime ideals
of height 1 of A other than p;. For p € U4, denote by q any prime ideal of B
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over p. Denote

sy (L/K) = {s(L(q)/K(p», e(L(@)/K (p)) = p.

0, otherwise,

where K (p) is the fraction field of A/p, and L(q) is the fraction field of B/q.
Introduce T, and T}, as in Subsection 8.3 and identify p with the arc Fj.

9.1.1. Proposition. (Existence of a uniform sufficient jet order, [Z02a, The-
orem 2.1].) For any r > 1 there exists R such that if p,p’ € T, and (Fy.Fy) >
R+ 1, then sp(L/K) = sy(L/K). Let sui,(L/K) be the minimal such R.
Then there exists N > 1 such that su; ,(L/K) < Nr for any r.

9.1.2. Remark. There was a mistake in the proof of “sufficient jet order con-
jecture” in [Z02b]. The correct part of this preprint on the bounded growth of
curve singularity invariants along certain tame and wild morphisms of surfaces
was published later as [Z06)].

Next, introduce Zariski topology in all T}, as in Subsection 8.3. Then the
following statements hold.

9.1.3. Proposition. (Semi-continuity of a break, [Z02a, Theorems 2.2-2.4].)
1. Let n > suy,»(L/K). Denote by J,(p) the n-jet of the arc F,. Then for
any s = 0 the set
{Jn(p)lp € T sp(L/K) < s}
is a closed subset in T, .
2. The supremum

sp(L/K) = sup{sp(L/K)|p € T, }

is finite.
3. Assume in addition that A is a G-ring. Then the sequence (s,(L/K)/r),
1§ convergent.

9.2. Extensions of prime degree. The paper [Fa] is devoted to morphisms
h: A — B of Subsection 8.3 with properties (i), (ii) and (iii) without assump-
tion that B is a Galois algebra over A.

Let T, T, g, C, n(C), C! have the same meaning as in Subsection 8.3.
Under the assumption n(C) = 1, denote by s¢ the only ramification break of
kE(C1)/k(C) as defined at the very end of §1. Then we have [Fa, Theorem 4]:

9.2.1. Proposition. (Existence of a uniform sufficient jet order.) For any
r > 1 there exists R such that if C,é’ €T, and (CC’) > R+ 1, then s¢ =
s@. Let suiy(h) be the minimal such R. Then there exists N > 1 such that
sui (k) < Nr for any r.
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Next, Faizov proved the following semi-continuity statement [Fa, Theo-
rems 5 and 6.

9.2.2. Proposition. (Semi-continuity of a break.) 1. Let n > sui,(h). Then
for any rational s > 0 the set

{/n(C)IC € Ty; sc < s}

is a closed subset in T, .
2. The supremum
sr(h) = sup{sc|C € T, }
is finite.

The proofs are based on careful work with Hamburger—Noether algorithm
for curve C yielding an explicit form of a uinformizing element of £(C).

9.3. Relation to singularity invariants. In the context of Subsection 8.3,
we considered regular arcs on Spec A; however, the arcs C/ on Spec B are in
general singular, and the complexity of singularity can reflect the ramification
data of the morphism A; this phenomenon was first observed in [Z06]. In [CZ]
we relate the semi-continuity property of ramification invariants with the semi-
continuity of §-invariant in families of singular arcs.

Let A, B be complete 2-dimensional regular local rings with algebraically
closed coeflicient subfield k. A finite k-homomorphism h : A — B will be called
unmized if h(ms) C mp and h(ma) ¢ m%. In particular, a homomorphism
with properties (i) and (ii) is unmixed if in its definition either e, = 1 or
ey = 1.

A decomposable homomorphism is by definition a composition of several
unmixed homomorphisms.

The following statement is proved in [CZ].

9.3.1. Proposition. Let h : A — B be a decomposable homomorphism of
degree m, and B its branch divisor in Spec A. Let C' be a reduced curve on
Spec A having no common components with B; C' = h*C. Let C{,...,C] be
all components of C'; C; = h,Cl, i = 1,...,1; d; the order of different in the
extension of discrete valuation fields k(C!)/k(C;). Then we have

25(C") — 2md(C) = (C.B) — Z d;. (16)
=1

This immediately implies

9.3.2. Corollary. Let h: A — B be a decomposable homomorphism, and B
its branch divisor in Spec A. Let C be a regular curve on Spec A which is not
a component of B; C},...,Cl all components of C' = h*C, i = 1,...,1; d;
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the order of different in the extension of discrete valuation fields k(Cl)/k(C).
Then

1) 22:1 d; < (C.B);

2) 6(C") < 3(C.B).

Consider a decomposable homomorphism A : A — B and assume that the
branch divisor of h is of the form B = bDy, where Dy is a regular reduced
irreducible curve on Spec A and b is a positive integer. (It is always so when
h has properties (i)—(iii) from Subsection 8.2.)

9.3.3. Lemma. Let A be a positive integer. Let A be a complete 2-dimensional
reqular local ring having a coefficient subfield. Consider two curves C,C on
Spec A such that §(C) < A, and C,C have the same 2A-jet. Let Cy,...,C,
be all irreducible components of C. Then C also has 1 irreducible components

C1, ..., Cp with §(C;) = §(C;) and (C;.Cy) = (C;.C;) for all i, j.

9.3.4. Question. Is it possible to estimate Milnor and Tjurina numbers
u(C) or 7(C) in terms of §(C)? Maybe, one could apply formulas for u(C')
from [BGM, MHW]. If yes, this would enable us to estimate finite determi-
nacy of C.

Next, let 7} g, n(C), C! have the same meaning as in Subsection 8.3.

9.3.5. Proposition. Let C be a regular curve on Spec A with (C.Dy) =1 <
00. Then, for the curve h*C, the number of components, their d-invariants
and intersection numbers depend only on the jet of C in Ty .

Proof. Let C' and C have the same br-jet. Then obviously #*C and h*C' also
have the same br-jet. In view of Corollary 9.3.2, 6(h*C) < br/2. It remains to
apply Lemma 9.3.3 with A = [br/2]. O

9.3.6. Corollary. For C as in the above proposition, let d; be the order of dif-
ferent in the extension of discrete valuation fields k(C})/k(C),i=1,...,n(C).
Then Y., d; depends only on the br-jet of C.

Proof. It follows from Proposition 9.3.5 and formula (16). O

Let us make the following Assumption Ss on the semi-continuity of the
d-invariant.

Let A be a complete 2-dimensional reqular local ring with algebraically closed
coefficient subfield k, and let U be an open subset ofAIJCV for some positive inte-
ger N. Let feA[X1,...,Xn] be such that for any closed point (ay,...,an)€U
the curve C(ay,...,an) = Spec A/(f, X1 —a1,..., XN — an) is reduced. As-
sume that there exists a positive integer A such that §(C(aq,...,an)) < A
for all (a1,...,an) € U. Then 6(C(aq,...,an)) is an upper semi-continuous
function on U.
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9.3.7. Proposition. If Assumption Sy is satisfied, then for anyr > 1, 6(h*C)
determines an upper semi-continuous function on T} py.

Proof. It follows immediately from Corollary 9.3.2. g

9.3.8. Question. Is it true that n(C) (the number of components of h*C')
determines a lower semi-continuous function on 7} ».7 What can be said about
the generic value of n(C)?

9.3.9. Corollary. For a reqular curve C on Spec A with (C.Dgy) = r, let
C1,...,C} be all components of h*C, n = n(C'), and d; the order of different in
the extension of discrete valuation fields k(C!)/k(C). Then .., d; determines
a lower semi-continuous function on Ty, if the Assumption S; is satisfied.

Proof. It follows immediately from Prop.9.3.7 and 9.3.1, since (C.B) = br. O

9.3.10. Question. We suggest to say that a lower semi-continuous integer-
valued function h on a variety S is purely lower semi-continuous if for every
N each component of the closed subset

Sy = {P € S|h(P) < N}

has codimension < 1 in the respective component of Sy1.

Is it true that Y . ; d; determines a purely lower semi-continuous function
on Ty, 7 Equivalently, is §(8y, .. ., Bpr) purely upper semi-continuous on 75 4,7
(Pure upper semi-continuity is defined similarly.)

This is related to Deligne’s conjecture that the loci of exceptional values of
ramification invariants are always hypersurfaces.

§10. Algebraic-geometric consequences of Abbes—Saito filtration

The theory of Abbes—Saito ramification filtrations has deep applications in
algebraic geometry, including Grothendieck-Ogg-Shafarevich type formulas
for Euler characteristic of étale sheaves. A survey of these geometric applica-
tions is also given in T. Saito’s ICM talk [Sal0]. Here we prefer to discuss at
the same time the global version of three analogous objects: lisse Q;-sheaves,
overconvergent F-isocrystals, and locally free coherent sheaves with integrable
connections; this way, we can compare their similarities as well as differences.

10.0.1. Question. This section can lead the reader to the following question:
could some of the results in this section find an application to the geometric
Langlands program? The authors are very interested in such potential rela-
tions.
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10.1. Setup. Let k be a field. For a smooth variety X over k, let D = Uj_, D;
be a divisor on X with strict simple normal crossings, where D; are irreducible
components. Let U = X\D denote the complement. Suppose that we are in
one of the following situations.

(a) F is a lisse Q;-sheaf on U, where [ is a prime number different from
char k;

(b) F is an F-isocrystal on U overconvergent along D, while char k& =
p>0;

(c) F is a locally free coherent sheaf on U with an integrable connection,
while char £ = 0.

At the generic point 7; of an irreducible component D; of the divisor D, one
can talk about

(a) the Swan conductor Sw(F; D;), obtained by considering the represen-
tation Gy(xyn — m(U) — GL(VF), where the latter homomorphism
is the representation associated to the lisse sheaf F; or

(b) the (differential) Swan conductor Sw(F;D;), obtained by passing to
the generic point in the sense of Subsection 6.5; or

(c) the irregularity Irr(F; D;) in the sense of Subsection 6.9 by base chang-
ing to the completion at 7;; we rename it as the Swan conductor
Sw(F; D;).

We define the Euler characteristic to be x (U, F) = Z]-(—l)j dim Hg(X, F),

where ? is the étale cohomology (after base change to k%) in case (a), is the
rigid cohomology in case (b), and is the de Rham cohomology in case (c).
When F is the trivial object, we write x(U) for x (U, F).

We list these three cases together because most of the results on ramification
theory hold in a similar fashion.

10.2. Results of variation of Swan conductors. The approach we will
take is local-to-global; building on the study of variation of Swan conductors
locally on X, we expect a global result from the local data at the end.

We explain the main results of [KeX, Kella, KelOb] on the variation prop-
erties of Swan conductors by means of an example. Historically, the same result
in the rank one case was already known to Kato, as explained implicitly in
his foundational work [Ka94]. We take X = A? = Speck[z,y], Do = Z(y)
and Dy = Z(x). Let F be as in either case considered in Subsection 10.1 over
U = X\(DoU D7) as above. We can consider the Swan conductors Sw(F; Dy)
and Sw(F; Dy).

We may blowup X at the origin P = Dy N Dy to get X' = BlpX; let Dy,
denote the exceptional divisor. Since F is defined on U, we can talk about
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the Swan conductor Sw(F; D;/5) of the sheaf F along D/, as in Subsec-
tion 10.1(b). Carrying on this idea, we can continue to blow up X’ along the
intersections of Dy with the proper transforms of Dy and D;. We use D 3
and Dy/3 to denote the two exceptional divisors for this blowup. Similarly,
the Swan conductors Sw(F; D/3) and Sw(F; Dy/3) are then well-defined. We
can iterate this process to blow up intersections of these divisors and then
consider the Swan conductors along all the exceptional divisors. We label the
exceptional divisors as follows: for each pair of coprime integers (m,n) € N2,
there is exactly one exceptional divisor Dy, /4, such that, for the valuation v
corresponding to Dy, /1, We have v(z) = n and v(y) = m. Along this divisor,
a Swan conductor Sw(F; Dy, /pm4y) can be defined as in Subsection 10.1(b).

10.2.1. Proposition. The function

n 1
— — n+mSW(f;Dn/m+n)

extends by continuilty to a convex piecewise linear function on [0, 1] with inte-
gral slopes.

This proposition is a special case of the results proved in [KeX, Kella,
KelOb] for a higher dimensional variety X and for an intersection point of
simple normal crossing divisors. (The essential part of the proof is in [KeX];
the statements appear in [Kella] for cases (a) and (b) and in [KelOb] for
case (c¢).) Moreover, the slopes of the piecewise linear function are related to the
refined Swan conductor homomorphism defined in Subsection 6.2; see [X12b]
for details.

10.2.2. Remark. We point out a caveat: there is no analogous result of
Proposition 10.2.1 for Artin conductors, because blowing up is log-smooth but
not smooth. So Swan conductors are better adapted to this type of variation
questions.

10.3. Approach to ramification theory using cutting-by-curves. It
would be interesting to clarify the relation between the Abbes—Saito filtration
at generic points (as discussed above) and the ramification data from cutting-
by-curves (as discussed in details in §9).

We first explain the “cut-by-curve” Swan conductors. Let D; be an irre-
ducible divisor of X, then one can define a new Swan conductor by taking

SW(‘7‘—|C; cn DZ)
oy )

where (C.D;) is the intersection number of C' with D; and the supremum is
taken over all curves C' that intersects with D; (not necessarily transversely).

SWcurve(f; Dz) = sup(
C
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A suggestion to study Sweyrve appeared (in 2-dimensional case) in [Z02b, Re-
mark 2.5.3]; a computation in the Artin—Schreier case was done in [Z02a] (see
above Prop. 9.1.3).

The natural question to ask is whether Sweyrve(F; D;) is the same as
Sw(F; D;) which is defined using the Abbes—Saito ramification filtration (as
in Subsection 10.1). This question is addressed by Barrientos [Ba] in case (a)
when the sheaf has rank one, which generalizes an idea of Deligne-Esnault—
Kerz [EK]. It would be interesting to generalize this to all cases in Subsec-
tion 10.1 for arbitrary rank objects. We also emphasize that using curves that
are not transversal to the divisor is essential in this theory, as shown in the
following example.

10.3.1. Example. Let X = A? be the zy-plane over a field k of characteristic
p and let D be the divisor Z(y). Consider the Artin-Schreier sheaf F over
U = X — D given by the equation 2 — z = z/yP, that is the lisse sheaf
associated to a nontrivial character of the Galois group Z/pZ of the cover of
U given by this equation.

Using Example 6.1.1, we see that Sw(F; D) = p, as x is not a pth power in
the residue field k(x). When restricted to each line C, : © = a for a € k8,
the Artin—Schreier equation becomes 2” — z = a/y” which is the same as
2P — 2 = al/P [y for 2/ = z—a'/?[y. So Sw(F|c,; DNC,) = 1. In other words,
the generic Swan conductor (using Abbes—Saito’s filtration) is not equal to the
Swan conductor restricted to any such curve C,.

If instead we consider the curve Cyp, : y = (z — a)™ for a € k¥& and
m > 0, the Artin-Schreier equation becomes 2P — z = z/(z — a)P™. Since the
intersection point is = a, we use change of variable 2’ = x — a; the equation
becomes 2P — z = (2 4+ a)z’~P™. If we substitute 2’ for z — a’/Pz'~™, we get
2P — 2 = g Pl 4 gl/Py!=m Tt follows that Sw(F|c, ,.; DN Caym) = pm — 1.
Thus,

i SwW(Flcymi DN Cam)
1m
L oup (D-Cam)

We also point out that when m = 1, the curve y = = — a is still trans-
versal to D, but Sw(F|c,,;D N Cy1) = p — 1, which is different from
Sw(F|e,; D N Cy) = 1; thus restricting to different transversal curves may
give different Swan conductors. The largest Swan conductor obtained by re-
stricting to transversal curves is p — 1, which is still smaller than the “correct
answer” p, as seen at the “generic point”. This is why we need to consider
curves non-transversal to the divisor.
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10.3.2. Question. Using the results on variation properties of Abbes—Saito
Swan conductors (Prop. 10.2.1) and the information of refined Swan conduc-
tors, can we say something along the line of semi-continuity type statement
proposed by Deligne [De76] (and proved in [La] in case of absence of ferocious
ramification)?

10.4. Towards generalized Grothendieck—Ogg—Shafarevich formulas.
One of the goals of Abbes and T. Saito’s project is to generalize the Euler char-
acteristic formula for [-adic sheaves. In fact, this should be applicable to all
three cases we discussed above. We will refer to such formulas as Grothendieck—
Ogg-Shafarevich type formulas (GOS type formulas for short). Under a clean-
liness condition which we explain later, a GOS type formula is expected to
take the following form (when rank 7 = 1 and dim X = 2)

r r
X(F) =x(U) = > Sw;-x(D§)+ Y Sw;Swy, - (Dj,.D;,), (17)
Jj=1 J1,j2=1

where Sw; is the Swan conductor of F along D; as in Subsection 10.1 and
D? = Dj — (Ujiz;Djr). (Compare this with the classical Grothendieck-Ogg-—
Shafarevich formula in Subsection 3.11.) The expression of the formula be-
comes more complicated when rank F > 1.

GOS type formulas are known when X is a curve. Case (a) is discussed in
Subsection 3.11. Case (b) is due to Christol, Crew, Matsuda, Mebkhout, and
Tsuzuki; a complete reference with a proof is given in [Ke06, Theorem 4.3.1].
Case (c) is due to Deligne and Gabber; one can find a proof in [Katz, Theo-
rem 2.9.9].

In [Ka94], Kato studied the GOS type formulas for higher dimensional va-
rieties and for F of rank one. There have been some recent generalizations of
Kato’s work to the case when both X and F are general. A GOS type formula
for case (a) is conjectured in [AS11, SalO] under the cleanliness condition,
and is proved under additional assumptions in [Sa09]. In case (c), a GOS type
formula under the cleanliness condition plus a very mild assumption is proved
in [X12+], which follows the idea of [Ka94, §1].

We now explain the key points that enter the proof of these GOS type
formulas.

First, it appears to be impossible to obtain an unconditional formula that
takes the form of (17). This is because the ramification data at the generic
points of the divisors do not determine the ramification at the closed points.
One has to impose a cleanliness condition on the object F, which roughly says
that the ramification at all closed points on D is determined by the ramification
data at generic points of D. The cleanliness condition is discussed in [AS11]
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for case (a), but also note the subtlety of different versions of cleanliness, as
discussed in [X12+] for case (c).

10.4.1. Question. We often encounter situations when F is not clean on X.
But we expect that there exists a birational proper morphism

f: (X', D) - (X,D)

such that f*F satisfies the aforementioned cleanliness condition. In case (c),
this expectation is known as the Sabbah Conjecture, proved by Kedlaya [KelOb,
Kellb] and Mochizuki [Mo-T] independently. It would be very interesting to
prove this expectation in cases (a) and (b). This may be thought of as a version
of desingulization, except that we are resolving the “singularities of a sheaf”.

Second, let us assume the cleanliness condition from now on. Along the way
of proving GOS type formulas, we expect that the ramification data (namely
the Swan conductors and the refined Swan conductors) also provides informa-
tion about the log-characteristic cycle of F (as a cycle in the log-cotangent
space of X). There are a good surprise and a bad surprise when one tries to
realize such philosophy. The good surprise is that, unlike in the usual (non-
logarithmic) characteristic cycle for an algebraic D-module, where all irre-
ducible components are conormal bundles of some closed subvarieties of X
(see, e.g., [HTT]), the log-characteristic cycle can contain arbitrary subbun-
dles of the log-cotangent space over some subvarieties of X .6 The expectation
is that the coefficients from the refined Swan conductors define the aforemen-
tioned subbundles which constitute the log-characteristic cycle. We also point
out that the Euler characteristic is only sensitive to the multiplicities of these
subbundles but not to how they are embedded in the log-tangent space of X.

The bad surprise is that the definition of log-characteristic cycles is a big
mystery! On one hand, it seems that there has not been a successful theory
of (log-)characteristic cycles for [-adic sheaves; on the other hand, even in the
cases (b) and (c), where a standard theory of characteristic cycles is available
(see [HTT] for case (c) and [Be] for case (b)), it is not entirely clear how to
make an analogous logarithmic theory. Two major difficulties are the lack of
appropriate log-holonomicity theorem for F (which may not even be finitely
generated over Dl)?g) and absence of Bernstein inequality. (We refer to [X12+]
for more discussion on pathological examples.) In case (c), the first author
[X12+] developed a theory tailored for the application to the GOS type for-
mulas. He does not know how to make analogous construction in case (b).

6This is related to the fact that the Poisson structure on the log-cotangent space is
degenerate.
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Third, the Euler characteristic and the log-characteristic cycles are expected
to be related. In the standard theory of algebraic D-modules and overconver-
gent F-isocrystals, the intersection number of the characteristic cycle with the
zero section of the cotangent space gives the Euler characteristic of F; this
formula is known as the Kashiwara—Dubson formula. See [HTT] for the alge-
braic D-module case and [Be] for the overconvergent F-isocrystal case. One
may hope to use a log-version of such a formula to deduce GOS type formu-
las by computing explicitly the log-characteristic cycles, at least in the case
of F-isocrystals and algebraic D-modules. Unfortunately, this comes back to
the bad surprise mentioned earlier: we do not have a satisfactory theory of
log-characteristic cycles for general F, except in case (c) where a GOS type
formula is proved in [X12+] under a mild hypothesis.

10.4.2. Remark. A very important application for an appropriate defini-
tion of log-characteristic cycles for overconvergent F-isocrystals would be the
following. Kedlaya develops a trick in [Kella, Section 5] that can “transfer”
the ramification data of a lisse [-adic sheaf to a (virtual) overconvergent F'-
isocrystal. Then we would get a natural definition of log-characteristic cycles
for lisse [-adic sheaves for free. To our knowledge, a general construction of
the (log-)characteristic cycles is not known for lisse [-adic sheaves. (Under
the cleanliness condition, Abbes and T. Saito [AS11] give a definition using
the refined Swan conductors, but it is unclear how to remove the cleanliness
hypothesis.)

10.5. A global approach by Kato—Saito. In the end, we briefly mention
an approach of Kato and T. Saito, in which they interpret the ramification
information of a lisse Q;-sheaf F as cycle classes supported on the boundary
divisor D. The method is global and hence is different from the view point we
took in previous subsections. We will only summarize the gist of the idea but
refer to [KSO08] for details.

One first chooses a Z;-lattice Fy of F and consider F = Fy/lIF, instead.
It turns out that the (wild) ramification information is completely contained
in the reduction F. Then there exists a finite Galois étale cover V of U over
which F is trivial. Put G = Gal(V/U); the sheaf F corresponds to an [Fj-
representation pz of G. Suppose that V' admits a compactification Y such
that £ = Y'\V is a divisor with simple normal crossings. Let f denote the
natural morphism f : Y\V — X\U. One can consider the intersection of the
diagonal Y and the graph of ¢ € G in certain log-product Y xx Y, viewed
as a cycle syyy(g) on Y\V. One defines sy, (id) so that > o syp(g) = 0.
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Kato and T. Saito [KS08] then formally define the Swan class to be

Sw(F) = fulsvyu(9))TeP (g5 pz) € CHy(D),
geG@

where TrP" is the Brauer trace. (Compare this to the definition of Swan char-
acter in Subsection 3.7.) The upshot of [KS08] is that, even if V' does not
admit a good compactification as above, one can use alteration to reproduce
the construction (at the expense of passing to Chow group with rational coeffi-
cients). Moreover, the Swan class does not depend on the choice of the lattice

Fo. Essentially by construction, the degree of the Swan class measures the
difference x(U, F) — x(U,Q;) - rankF.

10.5.1. Question. Can one prove an analogous result of Kato and T. Saito
in the cases (b) and (c¢) of Subsection 10.17?

We also mention that Abbes and T. Saito construct certain cohomology
classes for lisse [-adic sheaves (under a mild hypothesis) using purely cohomo-
logical method; they check that their construction is consistent with the work
of Kato and T. Saito above. Recently, Kato and T. Saito [KS13] extended
their work to varieties over QQp; in this case, the focus is no longer the Eu-
ler characteristic of F, but the Swan conductor of the cohomology of F as a
representation of Gal(Q3/Q,).

10.5.2. Question. It would be interesting to know if one can reproduce some
of the results in this subsection by working Zariski locally on X. Also, can we
relate this to the local approaches we discussed earlier?

§11. Miscellaneous questions

Here are some questions which are of interest for us but do not fit into other
sections.

11.1. Ramification numbers and structure of Galois groups. There
exists a number of results relating the structure of Galois groups with the
possible values of ramification invariants. Hasse—Arf theorem gives an example;
another example is the following Hyodo inequality ([Hy, Lemma (4-1)] or,
without class field theory, [295, §1]).

11.1.1. Proposition. Let M/K be a cyclic extension p?, L the intermediate
subfield. Then

dx(M/L) > min ((p — 1+ p Ndx(L/K),ex —p e +p 'di(L/K)). (18)
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11.1.2. Question. Given a complete discrete valuation field K, a word T =
T ...T, in the alphabet {W, F'} and an n-tuple of integers (i1,...,1,), does
there exist a cyclic extension L/ K with genome T and lower breaks (i1, ... ,ip)?

The answer is known only in 2 cases.

(1) The classical case: we only give the reference [Mik81] for the mixed
characteristic case. For equal characteristic case, a related work is [Th].

(2) Ferocious extensions of 2-dimensional fields [We].

In general, we cannot even answer the following question.

11.1.3. Question. Given a complete discrete valuation field K and a word
T =T, ...T, in the alphabet {W, F'}, does there exist a cyclic extension L/K
with genome 77

If char K = p, the answer is expected to be positive for any T'; however,
it cannot be so if char K = 0. Indeed, according to [Kur], in this case any
complete discrete valuation field belongs to one of two types; the fields of type
I (resp. of type II) do not have arbitrarily big cyclic ferocious (resp. wild)
extensions. It would be interesting to try to answer Question 11.1.3 in terms
of refinement of Kurihara’s classification by Ivanova [I12a, I12b].

One more aspect of this topic is the following phenomenon in the mixed
characteristic case: the assumption that the minimal ramification break of L/ K

bek

takes its almost maximal value, namely, A > s 1, has strong implications

for the whole ramification filtration; see [PVZ] for a number of results in this
direction.

11.2. Small ramification numbers and embedding problem. In this
subsection, we assume char K = 0.

By a result of Miki [Mik74], if L/ K is a cyclic extension of degree p, it can
be embedded into a cyclic extension of degree p” if and only if L({,) = K (z),
where z¥ € Ng, /x, Ky, and K, denotes K (Cpn). The following statement is
an easy consequence [VZ, §2].

11.2.1. Proposition. Let L/K is a cyclic extension of degree p with

dx(L/K) < ;5. Then L/K can be embedded into a cyclic extension of

degree p?.
We are interested in generalization of this observation to any Galois groups.

11.2.2. Question. Let f : G’ — G be an epimorphism of finite groups.
Does there exist an ey > 0 such that, for any Galois extension L/K of
mixed characteristic complete discrete valuation fields with Gal(L/K) ~ G
and di (L/K) < efegk, the embedding problem (L/K, f) has a solution?
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11.3. Ramification and higher adeles. It would be interesting to under-
stand what kind of ramification data are needed in adelic theory of arithmetic
surfaces. For example, the non-wild part of the conductor of the curve appears
in [Fel0, Subsection 3.4]; can we allow wild ramification here?
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