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áÌÇÅÂÒÁ É ÁÎÁÌÉÚ�ÏÍ 26 (2014), �5RAMIFICATION OF HIGHER LOCAL FIELDS,APPROACHES AND QUESTIONS
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ts, ideas and problems 
on
ern-ing rami�
ation in �nite extensions of 
omplete dis
rete valuation �elds witharbitrary residue �elds.We start in §3 with a rather 
omprehensive des
ription of the 
lassi
al rami-�
ation theory des
ribing the behavior of rami�
ation invariants in the 
ase ofperfe
t residue �elds. This in
ludes some observations that 
ould be not pub-lished earlier, e.g., Prop. 3.3.2 and 3.5.1. We pro
eed in §4 with the detailedstudy of an example showing that almost the entire 
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2 L. XIAO, I. ZHUKOVdown if we admit inseparable extensions of residue �eld and this 
annot beeasily repaired.The remaining part of the survey des
ribes several approa
hes aimed toreprodu
e parts of the 
lassi
al theory in the non-
lassi
al setting.Before dis
ussing general 
onstru
tions of the upper rami�
ation �ltration,in §5 we 
onsider separately abelian extensions starting with an important 
aseof m-dimensional lo
al �elds (with �nite last residue �elds). The study of this
ase 
an be helpful in development of appropriate intuition, espe
ially for thosefamiliar with higher lo
al 
lass �eld theory. Introdu
tion of m-dimensionallo
al �elds both determined interest to generalization of 
lassi
al rami�
a-tion theory and suggested tools for this; development of ea
h of the mainapproa
hes to higher lo
al 
lass �eld theory (by Parshin, Kato, Fesenko) was
omplemented by studies of rami�
ation theory for abelian extensions of su
h�elds. We 
ontinue with a dis
ussion of Kato's generalization of Swan 
ondu
-tors, whi
h de�nes an upper rami�
ation �ltration for an abelian extension ofany 
omplete dis
rete valuation �eld.
§6 is devoted to the des
ription of upper rami�
ation �ltrations in the gen-eral 
ase. This se
tion in
ludes very di�erent approa
hes: that of Abbes andT. Saito using rigid analyti
 geometry, and their reinterpretation by means ofl-adi
 sheaves; that of Kedlaya and the se
ond author using p-adi
 di�erentialequations; that of Borger using generi
 perfe
tion; and that of Boltje, Cramand Snaith. We list the basi
 properties of the rami�
ation �ltrations �rst, andthen dis
uss how to prove the properties using spe
i�
 
onstru
tions. We givereferen
es on the 
omparison results among these 
onstru
tions. At the end,we introdu
e the notion of irregularities with properties analogous to those oframi�
ation.The next se
tion starts with the observation that we still do not have a \fullysatisfa
tory" rami�
ation theory sin
e the upper rami�
ation �ltration doesnot give us enough information about \na��ve" invariants in
luding the lowerrami�
ation �ltration; we sket
h some requirements for a \satisfa
tory theory".We pro
eed to des
ribe an approa
h based on the theory of elimination ofwild rami�
ation. It results in a 
onstru
tion bearing some properties of the
lassi
al theory and giving additional information on the rami�
ation of thegiven extension. This approa
h still does not �ll the gap but gives some roomfor further developments as mentioned at the end of the se
tion.
§8 and §9 are devoted to the approa
h of Deligne who started to analyze2-dimensional rami�
ation problems by looking at all their 1-dimensional re-stri
tions. This makes sense in the 
ontext of 2-dimensional s
hemes, and wesuggest to study rami�
ation in an extension of 2-dimensional lo
al �elds by



RAMIFICATION OF HIGHER LOCAL FIELDS 3\globalizing" the setting, i.e., 
onstru
ting a suÆ
iently ni
e morphism of 
om-plete 2-dimensional lo
al rings whi
h serves as a model for given extension.For su
h morphisms Deligne's idea is appli
able: we 
an look at the indu
edmorphisms of algebroid 
urves on spe
tra of 2-dimensional rings and use the
lassi
al rami�
ation invariants for them. This study is at a very beginningstage, with some initial observations and a lot of open questions.In §10, we dis
uss the rami�
ation theory in a semi-lo
al or a global geomet-ri
 
ontext, for the l-adi
 and p-adi
 realizations as well as for the analogousalgebrai
 D-module 
ase. We will fo
us on the study of behavior of lo
al in-formation: Abbes{Saito rami�
ation �ltration, in a global 
ontext. The goalof the latter is to 
ompute the Euler 
hara
teristi
 in all three situations interms of the (lo
al) rami�
ation data, in hope to generalize the Grothendie
k{Ogg{Shafarevi
h formula. Furthermore, we hope to des
ribe or even de�nelog-
hara
teristi
 
y
les using the rami�
ation data.The last se
tion in
ludes some open questions whi
h we �nd 
urious andwhi
h are not 
overed in the previous text.We almost do not tou
h here asymptoti
 properties of rami�
ation numbersin in�nite extensions and related notions of deeply rami�ed or arithmeti
allypro�nite extensions ex
ept for Subse
tion 3.10; our subje
t is restri
ted to thearea of �nite extensions of 
omplete �elds whi
h still remains full of mystery.We understand that the subje
t is not fashionable and in many aspe
tslooks elementary. For this reason, various interesting results, observations,
onje
tures and questions have good 
han
es to remain unpublished or tendto be forgotten; some of the in
luded questions 
an already have answers. Wewould be happy to learn more about what is known and what is unknown;please do not hesitate to send us your 
omments and suggestions.Anyway, we were 
on
entrated mostly on the 
urrent state of the subje
tand even more on open questions (
hosen a

ording to our personal tastes);we did not aim to give a histori
al survey of the subje
t and apologize forobvious in
ompleteness (and possible bias) of the presenting tra
es of histori
alinformation.We are very grateful to V. Abrashkin, I. Barrientos, D. Benois, I. Faizov,I. Fesenko, E. Lysenko, M. Morrow and the anonymous referee for valuableremarks. NotationIf K is a 
omplete dis
rete valuation �eld of 
hara
teristi
 0 or p with theresidue �eld of 
hara
teristi
 p > 0, the following notation is used.
• � = �K : an arbitrary uniformizing element of K;



4 L. XIAO, I. ZHUKOV
• v = vK : the valuation on K as well as its (non-normalized) extension tothe algebrai
 
losure of K; we normalize it so that v(�K) = 1;
• OK : ring of valuation in K;
• mK = { a ∈ OK : v(a) > 0 }: the maximal ideal of OK ;
• UK = O∗K ;
• Ui;K = 1 +miK , i > 1;
• | · |: the norm on K given by |�|v(·); when K is of mixed 
hara
teristi
, werequire that |p| = p−1;
• K: the residue �eld of K;
• a: the residue 
lass in K of a ∈ OK ;
• e = eK = vK(p): the absolute rami�
ation index of K;
• Kalg: an algebrai
 
losure of K;
• Kab: the maximal abelian extension of K inside a given Kalg;
• GK : the absolute Galois group of K (often abbreviated to G when thereis no 
onfusion);
• �pn : a primitive pnth root of unity in Kalg (assuming 
harK = 0).For any integral s
heme S, k(S) is the �eld of rational fun
tions on S. Foran integral domain A, Q(A) is its fra
tion �eld.A representation of GK is always assumed to be 
ontinuous.

§1. Basi
 de�nitions1.1. Rami�
ation invariants. Here we re
all various rami�
ation invari-ants asso
iated with a �nite extension L=K where K is a 
omplete dis
retevaluation �eld with the residue �eld K of 
hara
teristi
 p > 0. We shall makea distin
tion between the 
lassi
al 
ase when K is perfe
t (or at least whenL=K is separable) and the non-
lassi
al 
ase when this assumption is omitted.We mention without referen
e fa
ts proved in [Se68℄ or [FV℄; in other 
ases,proofs or referen
es are usually in
luded.The most well-known rami�
ation invariants are:
• the rami�
ation index e(L=K) = vL(�K);
• the di�erent DL=K , whi
h 
an be de�ned, e.g., as the annihilator ideal ofthe OL-module of K�ahler di�erentials 
1

OL=OK ;
• the depth of rami�
ationdM (L=K) = infa∈L(vM (TrL=K a)− vM (a));where M is any �nite extension of K.These three invariants are related by a simple formula [Hy, formula (1-4)℄:vL(DL=K) = e(L=K) − 1 + dL(L=K): (1)



RAMIFICATION OF HIGHER LOCAL FIELDS 5One of the fundamental properties of the depth is its additivity [Hy, Lemma(2{4)℄. Namely, for an intermediate �eld K ′ in L=K we havedM (L=K) = dM (L=K ′) + dM (K ′=K): (2)We have[L : K℄ = e(L=K)f(L=K) = et(L=K)ew(L=K)fs(L=K)fi(L=K) = etewfsfi;where (et; p) = 1, ew = pN for some N > 0, fs = [L : K℄sep, fi = [L : K℄ins.A �nite extension L=K is said to be:
• unrami�ed, if [L : K℄ = fs;
• totally rami�ed, if fs = fi = 1;
• tame, if ew = fi = 1;
• wild, if [L : K℄ = ew;
• fero
ious,1 if [L : K℄ = fi;
• weakly unrami�ed, if et = ew = 1;
• 
ompletely rami�ed, if et = fs = 1.Note that L=K is tame if and only if dL(L=K) = 0 [Hy, Remark (2-12)℄.If L=K is a Galois extension with Galois group G, for any � ∈ G one de�nesthe Artin and Swan rami�
ation numbers by the formulasi(�) = iG(�) = infa∈OL vL(�(a) − a);s(�) = sG(�) = infx∈L∗

vL(�(a)a−1 − 1):In parti
ular, our 
onvention says iG(1) = sG(1) =∞.If OL is generated by x1; : : : ; xn as an OK-algebra, we haveiG(�) = infi vL(�(xi)− xi);sG(�) = infi vL(�(xi)x−1i − 1):In the 
lassi
al 
ase we have [Sn, 6.1.4℄:sG(�) = {iG(�)− 1; iG(�) > 0;0; iG(�) = 0:On the other hand, if L=K is fero
ious, then sG(�) = iG(�) for any � ∈ G.For an integer i > −1 the ith (\lower") rami�
ation subgroup is de�ned asGi = {� ∈ G : iG(�) > i+ 1}: (3)1Su
h extensions are more often referred to as �er
ely rami�ed; this is a translationof original Fren
h expression \fero
ement rami��e". However, John Coates told one of theauthors that the English word \fero
ious" is more appropriate here than \�er
e".



6 L. XIAO, I. ZHUKOVMore generally, for non-negative integers n and i, the (n; i)th rami�
ationsubgroup is de�ned asGn;i = {� ∈ G : vL(�(x) − x) > n+ i for all x ∈ m
iL}:It is a normal subgroup in G. There is a need to 
onsider Gn;i with i > 0 onlyin the non-
lassi
al 
ase. Indeed, in the 
lassi
al 
ase Gn;i = Gn−1 if p|i, andGn;i = Gn otherwise [dS, §2℄.The subgroups Gn = Gn+1;0 and Hn := Gn;1 form a �ltration on G [dS,Prop. 2.2{2.3℄: G ⊇ G0 ⊇ H1 ⊇ G1 ⊇ H2 ⊇ · · · ⊇ {1}Here G=G0 ≃ Gal(L=K) and (G : G0) = fs(L=K); G0=H1 is a 
y
li
 group oforder et(L=K); H1 is a p-group of order ew(L=K)fi(L=K). The subgroups G0and H1 will be referred to as the inertia subgroup and the wild rami�
ationsubgroup of G respe
tively.For i > 1, the subgroups Gn;i are non-informative, sin
eGn;i = {Hn; p ∤ i;Gn−1; p | i; when n > 1;and (when n = 1) G1;i=H1 is exa
tly the kernel of multipli
ation by i in the
y
li
 group G0=H1 (see [dS, Prop. 2.3℄).All elements of { s(�) : � ∈ G0; � 6= 1 } are 
alled the (\lower") rami�
ationbreaks of L=K. If L=K is an inseparable normal extension, the rami�
ationbreaks of L=K are de�ned as {the breaks of L0=K}∪ {∞} where L0=K is themaximal separable subextension of L=K.In the 
lassi
al 
ase the breaks are exa
tly the nonnegative integers i withGi 6= Gi+1. If (Gi : Gi+1) = pm, then i is 
alled a rami�
ation break ofmultipli
ity m.For the rest of the subse
tion, we assume that L=K is separable. For a Galoisextension L=K, the Hasse-Herbrand fun
tion 'L=K : [−1;∞) → [−1;∞) is apie
ewise linear map de�ned by the formula'L=K(u) = ∫ u0 dt(G0 : Gt) ;here it is assumed that Gt = G[t℄+1 for non-integral t, i.e., in the formula (3)we allow real numbers t, and (G0 : Gt) = 1 for t < 0. Sin
e 'L=K is stri
tlyin
reasing, the inverse fun
tion  L=K is well de�ned.It is known that, for a normal subextension M=K, we have'L=K = 'M=K ◦ 'L=M :(It is essential here that we 
onsider the 
lassi
al 
ase!) Therefore, 'L=K 
anbe de�ned for an arbitrary �nite separable extension L=K by the formula



RAMIFICATION OF HIGHER LOCAL FIELDS 7'L=K = 'L′=K ◦  L′=L, where L′=K is any �nite Galois extension 
ontainingL=K.Using the Hasse{Herbrand fun
tion, we de�ne the \upper" rami�
ation sub-groups Gu = G L=K(u) for all u > −1:The non-negative rational numbers u su
h that Gv 6= Gu for any v > u are
alled the upper rami�
ation breaks of L=K. The biggest su
h u is 
alled thehighest rami�
ation break, denoted by b(L=K).The upper rami�
ation breaks are exa
tly the ordinates of points on thegraph of 'L=K where the slope 
hanges, whereas the lower rami�
ation breaksare their abs
issas. The number 0 is a break if and only if et 6= 1; the otherbreaks are 
alled wild. A 
hange of slope by a fa
tor pm 
orresponds to a wildbreak of multipli
ity m. This property 
an be used as a de�nition of lowerand upper breaks for non-Galois �nite extensions L=K. (In this 
ase even thelower breaks need not be integral.)1.1.1. Example. Let L=K be a totally rami�ed 
y
li
 extension of degree pn,and let s1 < · · · < sn be all Swan rami�
ation numbers of L=K. Then L=Khave n upper breaks h1 < · · · < hn, all of multipli
ity 1, andhr = s1 + r∑i=2 si − si−1pi−1 = r∑i=1 p− 1pi si + 1pr sr: (4)1.2. m-dimensional 
omplete dis
rete valuation �elds. We give onlyde�nitions; see [HLF, Ch. I℄ for more information.For K a �eld, a stru
ture of an m-dimensional 
omplete dis
rete valuation�eld (m-CDVF) on K is a sequen
e of �elds km = K, km−1, . . . , k0 su
h thatki is a 
omplete dis
rete �eld with the residue �eld ki−1, 1 6 i 6 m. The �eldkm−1 (resp. k0) is referred to as the �rst (resp. the last) residue �eld of K.If the last residue �eld is perfe
t, K is said to be an m-dimensional lo
al�eld. (NB: often it is required that the last residue �eld is �nite.)A system of lo
al parameters of K is any m-tuple t1; : : : ; tm su
h that ea
hti is a lifting to K of some uniformizing element of ki.Fix a system of lo
al parameters t1; : : : ; tm and 
onsider the mapvK = (v1; : : : ; vm) : K∗ → Zm;where vm = vkm , vm−1(�) = vkm−1(�m−1), �m−1 is the 
lass of �t−vm(�)min km−1, and so on. Then vK is a dis
rete valuation of rank m; here Zm islexi
ographi
ally ordered as follows: i = (i1; : : : ; im) < j = (j1; : : : ; jm), if andonly if il < jl; il+1 = jl+1; : : : ; im = jm for some l 6 m:



8 L. XIAO, I. ZHUKOVIf we 
hange the system of lo
al parameters, the valuation is repla
ed by anequivalent one. Thus, vK is de�ned up to equivalen
e.For any �nite extension L=K, there exists a unique stru
ture of an m-dimensional 
omplete dis
rete valuation �eld on L 
ompatible with that onK; the non-normalized (Qm-valued) extension of vK on L is also denotedby vK .The notion of depth of rami�
ation 
an be generalized as follows [Hy, (1{3)℄:dM (L=K) = infa∈L(vM (TrL=K a)− vM (a));where both L and M are �nite extensions of K.
§2. Cy
li
 extensions of degree p and genome2.1. Cy
li
 extensions of degree p. Here we look 
arefully at the 
ase ofa Galois extension L=K with [L : K℄ = p (see also [Hy, Lemma (2-16)℄). Thisis important for dis
ussing examples in the subsequent se
tions.We �x a generator � of the Galois group G = Gal(L=K); then i(�) and s(�)are independent of the 
hoi
e of �; so we put s(L=K) = s(�).Sin
e [L : K℄ = etewfsfi, and et is prime to p, there are 3 
ases.Case U (unrami�ed): fs = p, ew = fi = 1. In this 
ase, i(�) = s(�) = 0.Case W (wild): ew = p, fs = fi = 1. Set s = vL(�(�L)=�L − 1). Then

OL = OK [�L℄ immediately implies i(�) = s+ 1 and s(�) = s.Case F (fero
ious): fi = p, fs = ew = 1. Choose any t ∈ OL su
h thatt =∈ K. Set s = vL(�(t)=t − 1). Then OL = OK [t℄ and i(�) = s(�) = s.In all three 
ases we have dL(L=K) = (p− 1)s(L=K).Let us 
ompute the rami�
ation invariants for spe
i�
 
onstru
tions of 
y
li
extension of degree p, i.e., for Artin{S
hreier and Kummer extensions.1◦. 
harK = p. In this 
ase L = K(x) for x satisfying xp − x = a ∈ K. Weput }(X) = Xp −X. We have v(a) 6 0 sin
e mK ⊂ }(K) by Hensel's lemma.Choose an equation with maximal possible v(a).If v(a) = 0, the Hensel's lemma implies a =∈ }(K), and we are in Case U.If v(a) < 0 and p ∤ v(a), we are obviously in Case W, and s(L=K) = −v(a).If v(a) < 0 and p | v(a), the maximality of v(a) implies that �−v(a)a =∈ Kp.It follows that we are in Case F, and s(L=K) = −v(a)=p.2◦. 
harK = 0, �p ∈ K. In this 
ase L = K(x) for x satisfying xp = a ∈ K.We 
an 
hoose a with v(a) = 1 or v(a) = 0; in the latter 
ase we require thatl = v(a− 1) is maximal. Then we 
an distinguish 5 
ases.A. v(a) = 1. Here we are in Case W, ands(L=K) = vL(�p − 1) = eLp− 1 = pep− 1 :



RAMIFICATION OF HIGHER LOCAL FIELDS 9B. v(a) = 0 and a =∈ Kp. This is Case F, ands(L=K) = vL(�p − 1) = eLp− 1 = ep− 1 :C. v(a) = 0, a = 1, l < pep−1 , p ∤ l. This is Case W, and s(L=K) = pep−1 − l.D. v(a) = 0, a = 1, l < pep−1 , p | l. From the maximality of l it follows thatthis is Case F, and s(L=K) = 1p( pep−1 − l).E. v(a) = 0, a = 1, l >
pep−1 . It follows from Hensel's lemma that in fa
tl = pep−1 , and this is Case U.2.2. Genome of an extension. Let L=K be a 
y
li
 extension of degreepn. It 
an be uniquely written as a tower L =Mn=Mn−1= : : : =M1=M0 = K of
y
li
 extensions of degree p. The genome of L=K is de�ned to be the wordT1 : : : Tn, where Ti = {W; if Mi=Mi−1 is wild;F; if Mi=Mi−1 is fero
ious:However, it is not 
lear how to de�ne the genome for a general Galoisextension of degree pn.2.2.1. Question. Let L=K be a 
ompletely rami�ed Galois extension. Canwe de�ne a tower L = Mn=Mn−1= : : : =M1=M0 = K of 
y
li
 extensions ofdegree p in an \almost 
anoni
al" way so that the word T1 : : : Tn as above iswell de�ned?

§3. What is ni
e in the 
lassi
al 
aseThroughout this se
tion we 
onsider only the 
ase when K is perfe
t. Welist various fa
ts whi
h are sometimes referred to as \beautiful rami�
ationtheory" in the 
lassi
al 
ase. (Probably the whole 
olle
tion of fa
ts has notbeen ever in
luded in one text.)3.1. Fa
tor groups. Let K ′ be an intermediate �eld in L=K. Then the ram-i�
ation invariants of K ′=K 
an be des
ribed in terms of those of L=K. Morespe
i�
ally, let L=K be a �nite Galois extension with G = Gal(L=K), and K ′an intermediate extension 
orresponding to a normal subgroup H. Then forany � ∈ G=H, � 6= 1, the Herbrand's theorem (see [Se68, Ch. IV, Prop. 3℄)says iG=H(�) = 1eL=K′

∑�H=� iG(�): (5)It follows that we have the following statement 
omparing the lower andthe upper rami�
ation �ltrations on G=H with those on G.



10 L. XIAO, I. ZHUKOV3.1.1. Proposition. 1. For any v > −1 we have (G=H)v = G L=K′ (v)H=H.2. For any v > −1 we have (G=H)v = GvH=H.3.1.2. Corollary. If H = Gj for some j, then(G=H)i = {Gi=H; i 6 j;
{1}; i > j:One of the ni
e 
onsequen
es of Prop. 3.1.1 is that we 
an de�ne the upperrami�
ation �ltration for an in�nite Galois extensions L=K by the formulaGal(L=K)v = lim
←−L′=K �niteL′⊂L Gal(L′=K)v:In parti
ular, we have an upper rami�
ation �ltration on the whole absoluteGalois group.3.2. Subgroups. Let L=K be a �nite Galois extension, andK ′=K any subex-tension. Put G = Gal(L=K) and H = Gal(L=K ′). Obviously, Hi = Gi ∩H forany i. Therefore,Hi = H L=K′ (i) = G L=K′ (i) ∩H = G'L=K◦ L=K′ (i) ∩H = G'K′=K(i) ∩H:3.3. Base 
hange. Here we observe how the rami�
ation invariants 
hangeas one passes from L=K to LK ′=K ′ for some �nite extension K ′=K linearlydisjoint with L=K. We start with the basi
 
ase of two Galois extensions ofdegree p.3.3.1. Lemma. 1. Let L1=K and L2=K be Galois extensions of degree p withpositive s1 = s(L1=K) and s2 = s(L2=K), and s1 < s2. Then s(L1L2=L2) =s1, and s(L1L2=L1) = s1 + p(s2 − s1).2. Let L1=K and L2=K be linearly disjoint Galois extensions of degree psu
h that s = s(L=K) > 0 is the same for any subextension L=K of degree pin L1L2=K. Then s(L1L2=L2) = s(L1L2=L1) = s.Proof. Set L = L1L2 and G = Gal(L=K).Assume �rst that L=K has two distin
t lower rami�
ation breaks s′1 < s′2.Put H2 = Gs′1+1, K ′ = LH2 . Then by Cor. 3.1.2 we haveGal(K ′=K)i = {Gal(K ′=K); i 6 s′1;

{1}; i > s′1;when
e s(K ′=K) = s′1.



RAMIFICATION OF HIGHER LOCAL FIELDS 11Let K ′′=K be any other subextension of degree p in L=K. Put H =Gal(L=K ′′). Let �0 be any element of G outside H. Note that �0H 
ontainsa unique element of H2 whose Artin number is s′2 + 1. By (5),iG=H(�0|K′′) = 1p((p− 1) · (s′1 + 1) + 1 · (s′2 + 1)) = s′1 + s′2 − s′1p + 1:It follows that s(K ′′=K) = s′1 + s′2−s′1p . Sin
e s1 and s2 are among s(K ′=K)and (all) s(K ′′=K), and s1 < s2, we 
on
lude that s1 = s′1, s2 = s′1 + s′2−s′1p .In the remaining 
ase when L=K has one break s′ of multipli
ity 2, the same
omputation shows that s(K ′′=K) = s′ for any subextension K ′′=K of degreep in L=K. �This 
an be generalized as follows.3.3.2. Proposition. Let L=K and K ′=K be �nite Galois p-extensions. As-sume that L=K have upper rami�
ation breaks h1; : : : ; hr with multipli
itiesm1; : : : ;mr. Assume that all the upper rami�
ation breaks of K ′=K are distin
tfrom h1; : : : ; hr. Then the upper rami�
ation breaks of LK ′=K ′ are  K′=K(h1);: : : ;  K′=K(hr) and their multipli
ities are m1; : : : ;mr.Proof. For [L : K℄ = [K ′ : K℄ = p, this is the �rst part of Lemma 3.3.1. Thegeneral 
ase follows by double indu
tion on [L : K℄ and [K ′ : K℄. �3.3.3. Question. If L=K and K ′=K are Galois extensions of degree p withthe same rami�
ation break, we 
annot determine the rami�
ation invariantsof LK ′=K ′ in general. However, in view of the se
ond part of Lemma 3.3.1, we
an do this if we know the rami�
ation breaks of all subextensions of degreep in LK ′=K.How 
an this observation be generalized to arbitrary �nite Galois p-extensi-ons L=K and K ′=K?3.4. Filtration on the group of units and the norm map. For a �niteextension L=K, 
onsider the norm map NL=K : L∗ → K∗ and its intera
tionwith the �ltration onK∗ given by the subgroups Ui;K for i > 1, and the similar�ltration on L∗. For any i > 1, de�ne f(i) by the 
onditionsNL=KUi;L ⊂ Uf(i);K ; NL=KUi;L 6⊂ Uf(i)+1;K :Then the map f = fL=K 
an be 
omputed from the rami�
ation breaks ofL=K and vi
e versa, at least if the residue �eld K is in�nite. Indeed, [FV,Prop. (3.1)℄ states essentially the following.3.4.1. Proposition. Assume that K is in�nite. Let L=K be a �nite Galoisextension. Put  =  L=K . Then for any positive integer j we have f(i) = j, if (j − 1) + 1 6 i 6  (j).



12 L. XIAO, I. ZHUKOV3.4.2. Remark. Thus, for in�nite K, fL=K(i) is equal to the minimal in-teger not less than 'L=K(i). If K is �nite, fL=K(i) 
an \jump" at the lowerrami�
ation breaks of L=K.3.4.3. Question. How to express fL=K in terms of 'L=K when K is �nite?3.4.4. Question. What is the exa
t relation between fL=K and 'L=K for anon-Galois extension L=K?3.5. Artin{S
hreier and Kummer �ltrations and the embedding map.First assume that 
harK = p. Then we have a �ltration on K=}(K) by thesubgroups Ci;K = (miK + }(K))=}(K); i 6 0:(Re
all that mK ⊂ }(K) by Hensel lemma.) Then, for a �nite extension L=K,we 
an 
onsider the intera
tion of this �ltration with a similar one on L=}(L).For i > 0, let g(i) denote the unique integer su
h that "(C−i;K) ⊂ C−g(i);L and"(C−i;K) 6⊂ C−g(i)+1;L, where " : K=p(K) → L=p(L) is the natural map.In the same spirit, if 
harK = 0, �p ∈ K, we 
an 
onsider the �ltration onK∗=(K∗)p given by the subgroupsC∗i;K = Ui;K(K∗)p=(K∗)p; 1 6 i 6
pep− 1 :(Re
all that U pep−1+1;K ⊂ (K∗)p.) For a �nite extension L=K and a positiveinteger i < pep−1 , we let g(i) denote the unique integer su
h that "(C∗pep−1−i;K)

⊂C∗pep−1−g(i);L and "(C∗pep−1−i;K)
6⊂ C∗pep−1−g(i)+1;L, where " : K∗=(K∗)p → L∗=(L∗)pis the natural map.The fun
tion g = gL=K in both 
ases is 
losely related to  =  L=K . Namely,Prop. 3.3.2 and expli
it 
omputation of the rami�
ation break for an Artin{S
hreier or Kummer extension immediately imply the following3.5.1. Proposition. Let i be a positive integer not divisible by p and dis-tin
t from any upper rami�
ation break of L=K. (We also require i < pep−1 if
harK = 0.) Then g(i) =  (i).If K is in�nite, we 
an use the se
ond part of Lemma 3.3.1 to prove3.5.2. Proposition. When K is in�nite and when i is a positive integer notdivisible by p (provided i < pep−1 if 
harK = 0), we have g(i) =  (i).Sin
e the upper breaks are always prime to p, this means that g determinesthe rami�
ation invariants of L=K whenever 
harK = p or K is in�nite.Similarly, if �pn ∈ K, one 
an de�ne an expli
it �ltration on K∗=(K∗)pn
ompatible with the upper rami�
ation �ltration on the maximal abelian ex-tension of K of exponent p.



RAMIFICATION OF HIGHER LOCAL FIELDS 133.5.3. Question. Can we re
over the fun
tion  L=K from the �ltrations onK(�pn)∗=(K(�pn)∗)pn for all n, thus eliminating the 
ondition i < pep−1 inProp. 3.5.2?If 
harK = p, the expli
it form of the �ltration on Wr(K)=}(Wr(K)) 
om-patible with the rami�
ation �ltration is given in [Br, §1℄. Here Wr denotesthe group Witt ve
tors of length r, and}((x0; : : : ; xr−1)) = (xp0; : : : ; xpr−1)−Wr(K) (x0; : : : ; xr−1);note that Brylinski uses a di�erent notation. For a new proof and very 
leartreatment of related questions, see [Th℄.3.6. Hasse{Arf theorem.3.6.1. Theorem. Let L=K be a �nite abelian extension. Then all upper ram-i�
ation breaks of L=K are integral.See [Se68, Ch. IV, §3℄, [FV, Ch. III, (4.3)℄.An inverse result is due to Fesenko [Fe95b℄.3.6.2. Proposition. Let L=K be a totally rami�ed �nite Galois extensionsu
h that for any totally rami�ed �nite abelian extension K ′=K all upper ram-i�
ation breaks of LK ′=K ′ are integral. Then L=K is abelian.3.6.3. Question. Can we repla
e the 
lass of all abelian extensions K ′=K bya smaller 
lass here, e.g., by the 
lass of all elementary abelian extensions, atleast in the 
ase 
harK = p?3.6.4. Question. For a �nite Galois extension L=K, 
an we determineGal(L=K), if we know all upper rami�
ation breaks of LK ′=K ′ for all abelianextensions K ′=K?One of the related results is the following Sen 
ongruen
e (see, e.g., [Sn,Theorem 6.1.34℄).3.6.5. Proposition. Let L=K be a �nite Galois extension, � ∈ Gal(L=K)su
h that s(�) > 0 and �pn 6= 1. Thens(�pn−1)
≡ s(�pn) mod pn:3.7. Artin and Swan representations. (See [Se68, Ch. VI℄, [Se77℄ as wellas the dis
ussion in [Sn, 6.1℄.) Fix a �nite Galois extension L=K, and put G =Gal(L=K). We de�ne the Artin and Swan 
entral fun
tion aG; swG : G → Z



14 L. XIAO, I. ZHUKOVby formulas aG(�) = {
−f · iG(�); � 6= 1;f ∑� 6=1 iG(�); � = 1;swG(�) = {
−f · sG(�); � 6= 1;f ∑� 6=1 sG(�); � = 1;where f = f(L=K).The Serre's theorem on the existen
e of Artin representations [Se77, p. 68℄
laims.3.7.1. Proposition. The 
entral fun
tions aG and swG are 
hara
ters of
ertain 
omplex representations of G.For the 
orresponding representations AG and SWG we have the follow-ing expli
it formulas in the ring of 
omplex representations R(G) (
ited from[Sn, 6.1℄): AG = ∞∑i=0 [G0 : Gi℄−1IndGGi(IndG{e}(1)− 1)and SWG = AG + IndGG0(1)− IndG{e}(1);where IndGH(V ) denotes the representation of G indu
ed by the representa-tion V of H, and 1 is the 
lass of 1-dimensional trivial representation of the
orresponding group.For a normal subgroup H of G it follows from Herbrand's theorem thatSWG=H ≃ SWG ⊗C[G℄ C[G=H℄: (6)For the 
hara
ter � of a 
omplex representation V of G, the Artin 
ondu
torof � (or V ) is de�ned asArK(�) = ArK(V ) = 〈aG; �〉G = 1

|G|

∑g∈G aG(g)�(g):Similarly, the Swan 
ondu
tor of � (or V ) isSwK(�) = SwK(V ) = 〈swG; �〉G = 1
|G|

∑g∈G swG(g)�(g);we have SwK(V ) = ArK(V ) + dimV G0 − dimV:



RAMIFICATION OF HIGHER LOCAL FIELDS 153.7.2. Example (see [Se68, Ch. VI, Prop. 5℄). Let L=K be a totally rami�ed
y
li
 extension of degree pn, and � the 
hara
ter of any faithful (i.e., inje
-tive) representation of G = Gal(L=K) = 〈g〉. Let s1 < · · · < sn be all Swanrami�
ation numbers of L=K. ThenSwK(�) = 1pn pn∑i=1 �iswG(gi)= 1pn n∑r=0 ∑vp(i)=r �iswG(gi)= −
1pn n−1∑r=0 sr+1 ∑vp(i)=j �i + 1pn pn−1∑i=1 sG(gi)= 1pn(sn + n−1∑r=0(pn−r − pn−r−1)sr+1)= b(L=K)in view of (4), where � is a primitive pnth root of unity in C.3.7.3. Remark. This is the simplest 
ase of the following fa
t (see [Se68,Ch. VI, §2, Ex. 2℄). Let V be an irredu
ible representation of G of dimen-sion d. Then ArK(V ) = d(b(L=K) + 1), where b(L=K) is the highest (upper)rami�
ation break de�ned in Se
tion 1.1.As a 
onsequen
e of this fa
t, we may de�ne the Artin 
ondu
tor and Swan
ondu
tor of a �nite dimensional 
omplex representation V of G to beArK(V ) = ∑a>−1(a+ 1) · dimV Ga+=V Ga ; SwK(V ) = ∑a>0 a · dimV Ga+=V Ga:Note that one 
an re
over the rami�
ation �ltration on G from Artin 
on-du
tors of all its irredu
ible representations. (The same does not hold for Swan
ondu
tors sin
e Swan 
ondu
tor measures only wild rami�
ation and does notknow anything about (G0 : G1).)In a similar way, one 
an de�ne Swan 
ondu
tors for Fl-representations;this version of Swan 
ondu
tor is used in the Grothendie
k{Ogg{Shafarevi
hformula (see Subse
tion 3.11 below).There is an alternative and equivalent way of stating Proposition 3.7.1.3.7.4. Proposition. For all �nite dimensional 
omplex representation V ofG, the Artin 
ondu
tor ArK(V ) and the Swan 
ondu
tors SwK(V ) are non-negative integers.



16 L. XIAO, I. ZHUKOVApplying this to all one-dimensional representations of G and using theabove expli
it des
ription of Artin and Swan 
ondu
tors (Remark 3.7.3), weobtain that b(L=K) is always an integer for an abelian extension L=K. Thus,we re
over the original Hasse{Arf Theorem 3.6.1. So sometimes the aboveproposition will be also referred to as the Hasse{Arf theorem.3.8. Lo
al 
lass �eld theory. Let K be a 
omplete dis
rete valuation �eldof any 
hara
teristi
 with a quasi-�nite residue �eld of prime 
hara
teristi
.(A �eld F is 
alled quasi-�nite if GF ≃ Ẑ.)The 
entral theorem of lo
al 
lass �eld theory states that there exists ahomomorphism �K : K∗ → Gal(Kab=K) uniquely determined by the follow-ing two properties.1. For any �nite abelian extension L=K, �K indu
es an isomorphism �L=K :K∗=NL=KL∗ → Gal(L=K).2. For any prime element �K , the restri
tion of �K(�K) on the maximalunrami�ed extension of K is the Frobenius automorphism.It appears that the re
ipro
ity map transforms the valuation �ltration onthe multipli
ative group into the upper rami�
ation �ltration on (abelian)Galois group. More pre
isely, we have the following results. ([Se68, Ch. XV,Th. 1 with Cor. 3 and Th. 2℄. Note that NL=KU (n);L ⊂ Un;K by Prop. 3.4.1.)3.8.1. Proposition. Let L=K be a �nite abelian extension. Put  =  L=K.1. For any positive integer n, the 
anoni
al map Un;K=NL=KU (n);L →K∗=NL=KL∗ is inje
tive.2. The re
ipro
ity map �L=K transforms the �ltration on K∗=NL=KL∗ bysubgroups Un;K=NL=KU (n);L into the �ltration on G = Gal(L=K) by Gn.3.8.2. Proposition. Let L=K be a possibly in�nite abelian extension withGalois group G = Gal(L=K). Then for any positive integer n, the image of�K(Un;K) ⊂ Gal(Kab=K) in G is dense in Gn (and is equal to Gn if theresidue �eld K is �nite).In 
hara
teristi
 0, provided �p ∈ K, this implies the self-duality of thevaluation �ltration on K∗=(K∗)p with respe
t to the Hilbert symbol. In 
har-a
teristi
 p, we have a duality between the valuation �ltration on K∗=(K∗)prand the Brylinski �ltration on Wr(K)=}(Wr(K)), see [Br, Theorem 1℄.For Fesenko's non-abelian re
ipro
ity map [Fe01℄, 
ompatibility with therami�
ation �ltration was established in [IS℄.3.9. Lo
al anabelian geometry. Let K1 and K2 be lo
al �elds (
ompletedis
rete valuation �elds with �nite residue �elds) su
h that there exists anisomorphism between absolute Galois groups of K1 and K2 preserving the
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ation �ltration. Then this isomorphism is indu
ed by an isomorphismbetween K1 and K2.This was �rst proved in the 
hara
teristi
 0 
ase by Sh. Mo
hizuki [Mo-S℄.A proof suitable for any 
hara
teristi
 was given by Abrashkin [Abr00, Abr10℄.3.10. A theorem of Deligne. Let K and K ′ be two 
omplete dis
rete val-uation �elds (typi
ally with large absolute rami�
ation indi
es in the 
ase ofmixed 
hara
teristi
). Assume that there exists b ∈ N su
h that there is anisomorphism OK=�bKOK ∼= OK′=�bK′OK′ as rings. Deligne [De84℄ proved thefollowing result.3.10.1. Proposition. Keep the notation as above. If K has a perfe
t residue�eld, then there is a 
anoni
al isomorphismGK=GbK ∼= GK′=GbK′ : (7)In other words, the quotient Galois groups above depend only on the trun-
ated dis
rete valuation rings OK=�bKOK ∼= OK′=�bK′OK′ . Note that therewere no assumptions on the 
hara
teristi
s of K and K ′. In parti
ular, they
ould be di�erent, whi
h may be used to build a 
onne
tion between the mixed
hara
teristi
 �elds and the equal 
hara
teristi
 �elds on the aspe
t of rami�-
ation theory.Deligne's theorem provides an alternative way to understand the �eld ofnorms of Fontaine and Wintenberger [FW1, FW2℄ (whi
h pre
edes Deligne'swork).Put Kn = Qp(�pn) for n ∈ N and K∞ = ∪n∈NKn. We take the uniformizer�Kn to be �pn − 1. Then the tower (Kn)n∈N is APF (short for arithmeti
allypro�nite) in the sense of [FW1, FW2℄. The following statement is a spe
ial
ase of the main result of Fontaine{Wintenberger [FW1, FW2℄ (exposed alsoin [FV, Ch. III, Theorem 5.7℄).3.10.2. Theorem. There is a 
anoni
al isomorphism between the absoluteGalois group of K∞ and that of the equal 
hara
teristi
 �eld Fp((T )).One 
an give a heuristi
 proof using Deligne's theorem as follows. For ea
hn, we put rn = pn−1(p−1) so that OKn=�rnKn ∼= Fp[[T ℄℄=(T rn). Deligne's theoremthen implies that we have an isomorphismGFp((T ))=GrnFp((T )) ∼= GKn=GrnKn : (8)An easy 
omputation shows that 'Kn=K(n) = rn. The basi
 property in Sub-se
tion 3.2 implies that GrnKn = GnQp ∩ GKn. Thus, taking the inverse limit of(8) gives an isomorphism between GFp((T )) and GK∞
.We expe
t that the same proof works for general 
omplete dis
rete valuation�eld K in pla
e of Qp, at least when the residue �eld K is perfe
t, and hen
e
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ould reprove the main result of [FW1, FW2℄ this way. The APF 
onditionis expe
ted to ensure that the inverse limit of (8) as n→ ∞ gives the isomor-phism between the Galois group of K∞ and that of K((T )). Unfortunately,we do not know if su
h a proof exists in the literature.3.11. Global formulas. Let X be a smooth proje
tive 
urve over an alge-brai
ally 
losed �eld and let Y be its normalization in a �nite extension ofk(X ). Riemann{Hurwitz formula 
ompares the genera of these 
urves:2gY − 2 = [k(Y) : k(X )℄(2gX − 2) +∑Q vQ(DY=X );where Q runs over all 
losed points of Y.Let U be a dense open subset of X , �� a geometri
 generi
 point of X , and Fa lo
ally 
onstant sheaf of Fl-modules of �nite rank on U�et. Then the geometri
generi
 �berM = F�� is a �nite-dimensional Fl-representation of Gal(k(X )); itfa
tors through Gal(L=k(X )), where L=k(X ) is some �nite Galois extension.For a 
losed point P of X , the Swan 
ondu
tor SwP F is de�ned as the Swan
ondu
tor of M 
onsidered as Gal(Lw=k(X )v)-module, where v 
orrespondsto P , and w is any extension of v to L. Independen
e of L follows from an Fl-analog of (6). Then the Grothendie
k{Ogg{Shafarevi
h formula for F reads:�
(U;F) = �
(U;Fl) rankF −
∑P∈X\U SwP F ; (9)where �
(U; ·) is the Euler-
hara
teristi
 of the 
orresponding �etale sheaf. (This
an be obtained from the shape of G.-O.-S. formula in [Mil℄ as follows. Letu : U ,→ X , F0 a 
onstant sheaf on U�et of rank equal to rankF . Apply theformula in [Mil, Ch. V, Th. 2.12℄ to both u!F and u!F0 and 
ompute thedi�eren
e.)See [K�o℄ for equivariant versions of Riemann{Hurwitz and Grothendie
k{Ogg{Shafarevi
h formulas.3.11.1. Remark. We point out that there is an analogous statement forlisse Ql-sheaves instead of lisse Fl-sheaves.2 In fa
t the formula for the formerredu
es to that of the latter, as we explain now.A lisse Ql-sheaf F 
orresponds to a representation � : �1(U) → GLd(Ql).Sin
e the fundamental group is pro�nite and hen
e 
ompa
t, the image �(�1(U))lands in GLd(Zl) (up to 
onjugation). This integral representation �◦ gives riseto a lisse Zl-sheaf F◦. Put �� = �◦mod l and �F = F◦=l. It is not diÆ
ult to2We 
an of 
ourse 
onsider a �nite extension of Ql in pla
e of Ql; the argument goesthrough with no essential 
hanges.



RAMIFICATION OF HIGHER LOCAL FIELDS 19show that the Euler 
hara
teristi
 of F agrees with that of �F . We need tomat
h the Swan 
ondu
tors.Note that, for ea
h point P ∈ X\U , the wild rami�
ation group WP atP is a pro-p group; but the kernel of GLd(Zl) → GLd(Fl) is a pro-l group.Hen
e the image �(WP ) has trivial interse
tion with Ker(GLd(Zl) → GLd(Fl));
onsequently, we have an isomorphism �(WP ) ∼= ��(WP ). From this it is 
learthat SwPF = SwP �F , sin
e both sides depend only on the a
tion of the wildinertia group.3.12. Completeness. Given a �nite Galois extension of 
omplete dis
retevaluation �elds L=K with Gal(L=K) = G, we have a number of rami�
ationinvariants o

urring in various formulas: e(L=K), vL(DL=K), Gi and Gi fori > 0, ArK(V ) and SwK(V ) for a 
omplex representation V of G. However,there is a suÆ
ient system of rami�
ation invariants, namely, the lower rami-�
ation �ltration, whi
h \des
ribes the rami�
ation 
ompletely": all the otherrami�
ation invariants (in
luding lo
al terms of 
lassi
al global formulas) 
anbe expressed in terms of it. (Upper rami�
ation �ltration is a suÆ
ient systemof invariants as well. The same is true for Artin 
ondu
tors of all 
omplexrepresentations of G.) For example,e(L=K) = |G0|;vL(DL=K) = ∞∑i=0 |Gi| − 1; (10)and SwK(V ) = ∞∑i=1 1(G : Gi) dimC(V=V Gi);where V is a �nite-dimensional 
omplex representation of G.
§4. What is missing in the non-
lassi
al 
aseThis se
tion is devoted to the detailed study of an example of extension L=Kwith Gal(L=K) ≃ (Z=p)2 for whi
h Lemma 3.3.1 (as well as any reasonableanalog of it) fails. Furthermore, the example exhibits obsta
les to extension ofthe most part of the 
lassi
al theory to the general 
ase.Let K be a 
omplete dis
rete valuation �eld of 
hara
teristi
 p > 0 withimperfe
t residue �eld. Fix a prime element � and t ∈ OK su
h that t 6∈ Kp.Take some positive integers N > n > m su
h that N ≡ n ≡ −1 (mod p). Nowwe de�ne L1=K and L2=K by Artin{S
hreier equations:K1 = K(x1); xp1 − x1 = a1 = �−n + �−mt;K2 = K(x2); xp2 − x2 = �−N ; (11)



20 L. XIAO, I. ZHUKOVand set L = K1K2 = K(x1; x2) = K1(x2) = K2(x1).In view of the 
onsiderations in §2, both K1=K and K2=K are wild, ands(K1=K) = n, s(K2=K) = N . Note also that for any subextension K ′=K ofdegree p in L=K we have s(K ′=K) = N unless K ′ = K1.LK1 |||||||| K2?BBBBBBBBKnBBBBBBBB N||||||||Let us 
ompute s(L=K2). Put N = pD−1. Then �2 = x2�D is a uniformizerof K2. The equation (�Dx2)p − �(p−1)D(�Dx2) = �implies that � = �p2 − �(p−1)pD+12 + · · · ;where the dots denote terms of higher order. Thus,a1 = (�p2 − �(p−1)pD+12 + · · · )−n + (�p2 − �(p−1)pD+12 + · · · )−mt= �−pn2 (1− �(p−1)pD−p+12 + · · · )−n + �−pm2 (1− �(p−1)pD−p+12 + · · · )−mt= �−pn2 (1 + n�(p−1)N2 + · · · ) + �−pm2 (1 +m�(p−1)N2 + · · · )t= �−pn2 + n�−pn+(p−1)N2 + · · ·+ �−pm2 t+ · · ·

≡ �−n2︸︷︷︸
−n +n�−pn+(p−1)N2︸ ︷︷ ︸

−pn+(p−1)N + · · ·+ �−pm2 t︸ ︷︷ ︸
−pm + · · · (mod }(K2));where the numbers under the bra
es denote the 
orresponding values of vK2 .Assume further that m > np . Sin
e −n < −pn+N(p− 1), the valuation ofthe sum is −pm. We 
an 
on
lude that L=K2 is fero
ious, and s(L=K2) = m.Note that the latter number is not determined by the values of n = s(K1=K)and N = s(K2=K). (However, if m < np , the valuation of the sum is −n, theextension L=K2 is wild and s(L=K2) = m. In fa
t, we are in the 
lassi
al 
asehere.)We see that an analog of Lemma 3.3.1 is not true in the general 
ase: we
annot predi
t s(L=K2) even having known the s(K ′=K) for any subextensionK ′=K of degree p in L=K.
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ompatibility with fa
tor groups" property also fails in the gen-eral 
ase. Indeed, from the depth additivity (2) we havedL(L=K) = dL(L=K2) + dL(K2=K) = (p− 1)m+ (p− 1)Nand dL(L=K1) = dL(L=K)− dL(K1=K) = (p− 1)(m +N)− (p− 1)n;when
e s(L=K1) = m + N − n. Therefore, the two breaks of the (lower)rami�
ation �ltration of L=K are m and m+N − n, and these two numbersdo not give enough information to determine, say, s(K1=K) = n.Essentially, this example shows that we 
annot give a suitable de�nition of\upper rami�
ation �ltration" based on the usual (Artin or Swan) rami�
ationnumbers, and 
onsequently we lose all 
onstru
tions and fa
ts using this upper�ltration: Hasse{Arf theorem, Artin and Swan representations, global formulaset
.Also, we do not have any \
ompleteness" for the known systems of in-variants. In parti
ular, one of the motivating goals in the development of a\non-
lassi
al" rami�
ation theory 
ould be to obtain an expli
it form for theorder of di�erent (or, equivalently, for the depth of rami�
ation) in terms ofsuitable lower or upper rami�
ation breaks, i.e., an analog of (10).For more examples showing \mysterious behavior" of rami�
ation invariantsin the non-
lassi
al 
ase (see [Hy℄, [Sn, 6.2℄, [Lo℄).
§5. Upper rami�
ation �ltration: abelian extensionsAs we 
ould see in the previous se
tion, the 
lassi
al rami�
ation invariantsbehave poorly when the residue �eld K is no longer perfe
t. In parti
ular,we 
annot expe
t any theory of upper rami�
ation �ltration based on usualrami�
ation numbers. However, one 
an be interested in an \independent"
onstru
tion of an upper �ltration per se with properties analogous to someproperties of the upper �ltrations in the 
lassi
al 
ase, e.g., to some of thosestated in Subse
tions 3.1, 3.6, 3.7, 3.8, 3.9, 3.10, 3.11.Fortunately, there is a quite satisfa
tory theory for the upper rami�
ation�ltrations, whi
h now be
omes standard. The general 
onstru
tion will beaddressed in the next se
tion, and here we are 
on
entrated on the 
ase ofabelian extensions.5.1. Upper �ltration via 
lass �eld theory. Note that for abelian exten-sions of usual lo
al �elds the upper rami�
ation �ltration 
an be re
overedfrom the �ltration on the multipli
ative group by Prop. 3.8.1. In the sameway one 
ould de�ne an upper rami�
ation �ltration in the situations wheresome 
lass �eld theory is available, e.g., for abelian extensions of higher lo
al



22 L. XIAO, I. ZHUKOV�elds with �nite last residue �eld (see [HLF℄ for the basi
 fa
ts about higherlo
al �elds and [Fe96℄ for a survey of various versions of higher lo
al 
lass �eldtheory). This approa
h was explored in several papers starting from [Lo℄. Forexample, Hyodo [Hy℄ de�nes (\upper") rami�
ation breaks for a �nite abelianextension L=K of m-dimensional lo
al �elds (with �nite last residue �eld) asm-tuplesjL=K(l) = {max{i ∈ Zm+ : |�L=K(UiKtopm K)| > pl}; if su
h i exists;0; otherwise, (12)for all l > 1, where �L=K : Ktopm K → Gal(L=K) is the re
ipro
ity mapand (UiKtopm K) is the standard �ltration on Ktopm K de�ned by means of thevaluation of rank m:UiKtopm K = 〈 {u; x2; : : : ; xm} |u; x2; : : : ; xm ∈ K∗; vK(u− 1) > i 〉:In other words, for i = (i1; : : : ; im) > 0, the subgroup Gi in G = Gal(L=K)is de�ned as �L=K(UiKtopm K) assuming that the last residue �eld of K is�nite. (Re
all that �L=K indu
es an isomorphism from Ktopm K=NL=KKtopm Lonto Gal(L=K).) If we are not interested in multi-index numbering, we 
anput Gi = ⋃im=iGifor any positive integer i.For the 
ase of arbitrary perfe
t last residue �eld, see [Fe95a, §4℄.Using this de�nition, one 
an translate questions 
on
erning rami�
ation inabelian extensions of m-dimensional lo
al �elds into questions about natural\valuation" �ltration on groups Ktopm K. In parti
ular, the behavior of theupper �ltration on Gal(L=K) with respe
t to the restri
tion to a subgroupGal(L=K ′) is related to the a
tion of the norm map NK′=K : Ktopm K ′ → Ktopm Kon the valuation �ltration.5.2. Kato{Swan 
ondu
tor. In a 
ompatible manner with the above 
on-stru
tion, Kato [Ka89℄ introdu
ed a notion of a 
ondu
tor for one-dimensionalrepresentations of Gal(L=K), where L=K is a �nite extension of a 
ompletedis
rete valuation �eld with any residue �eld.We do not in
lude Kato's de�nition, sin
e it is diÆ
ult to do this in a self-
ontained manner; see, e.g., [Sn, 6.2℄. However, his 
ondu
tor KSw(�) 
an be
hara
terized by either of the following two properties [Sp99, Prop. 3.3.10 andCor. 3.3.11℄.



RAMIFICATION OF HIGHER LOCAL FIELDS 235.2.1. Proposition. Let � ∈ H1(K) be a 
hara
ter of Gab = Gal(Kab=K);denote by L� the sub�eld in Kab �xed by �.1. KSw(�) is the smallest integer n > 0 su
h that {�L0 ; u} = 0 in BrL0 forany u ∈ Un+1;L0, where L0 is the maximal unrami�ed subextension in L�=K.2. KSw(�) is the smallest integer n > 0 su
h that Un+1;K ⊂ NL�=KL∗�.Here H1(K) = Hom(Gab;Q=Z); the bra
es denote the 
ohomologi
al pair-ing H1(K)×K∗ → H2(K) ∼= BrK.From this, one 
an de�ne a �ltration Gab;• on Gab so that, for any 
hara
ter� of Gab, we have KSw(�) = inf{a > 0 |Gab;a ⊆ Ker�};we 
all this �ltration the Kato �ltration on Gab.For an m-dimensional lo
al �eld K with �nite last residue �eld and � ∈H1(K), KSw(�) is exa
tly the smallest integer n > 0 su
h that �L=K(UiKtopm K)a
ts trivially on L� whenever im > n, see [Sp99, 3.4℄. In other words, KSw(�)is the last 
omponent of the maximal break j(1) for L�=K in Hyodo's nota-tion (12).In the 
lassi
al 
ase this Kato{Swan 
ondu
tor 
oin
ides with the usualSwan 
ondu
tor. This relation between KSw and the usual (Swan) rami�
ationnumbers is in for
e also in the so-
alled Case II (
f. Subse
tion 7.2) [Ka89,Prop. 6.8, p. 12℄.5.2.2. Proposition. Let L=K be a �nite Galois extension and � : GL=K → C∗a one-dimensional representation. Assume that either L=K is separable ore(L=K) = 1 and L=K is generated by one element. ThenKSw(�) = −
1e(L=K) ∑�∈GL=K s(�)�(�);where we use the 
onvention that s(1) = −

∑�∈GL=K ;� 6=1 s(�). (See Subse
-tion 1.1 for the de�nition of s(�).)
§6. Upper rami�
ation �ltration: general 
aseIn this se
tion, we dis
uss a few approa
hes whi
h generalize the rami�
ation�ltration 
onstru
ted by Kato to the whole Galois group. Before giving the
onstru
tions, we list their properties in the �rst three subse
tions, providedwith typi
al examples. We then turn into various 
onstru
tions and relatedtopi
s on the subje
t in the following subse
tions.
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 properties. Let K be a 
omplete dis
rete valuation �eld as be-fore with possibly imperfe
t residue �eldK of 
hara
teristi
 p. In parti
ular,K
ould be of either mixed 
hara
teristi
 or equal 
hara
teristi
. Let G = GK bethe Galois group of K. There exist two rami�
ation �ltrations G•nlog and G•logon G, indexed by non-negative rational numbers; they are 
alled the (upper)non-logarithmi
 rami�
ation �ltration and (upper) logarithmi
 rami�
ation �l-tration of G, respe
tively. Roughly speaking, the adje
tives \non-logarithmi
"and \logarithmi
" refer to di�erent normalizations to balan
e the \wild part"and the \fero
ious part" of the rami�
ation. In parti
ular, when K is perfe
t,both of these �ltrations are the same (up to a shift of indexing) as the usualupper rami�
ation �ltration. (See property (5) below.)We use the standard 
onvention for rami�
ation �ltrations: for a ∈ R>0,we write Ganlog to mean the 
losure of ∪b>a;b∈Q>0Ganlog and Ga+nlog to meanthe 
losure of ∪b>a;b∈Q>0Ganlog; and the same for the logarithmi
 rami�
ation�ltration. For L a �nite Galois extension of K, we use bnlog(L=K) to denotethe highest non-logarithmi
 rami�
ation break inf{b |Gbnlog ⊆ GL}; and thesame for the logarithmi
 rami�
ation �ltration.The basi
 properties are listed as follows (proved in [AS02℄).(1) Both �ltrations are left 
ontinuous, with rational breaks.(2) For 0 < a 6 1, Ganlog is the inertia subgroup of G (inverse limit ofinertia subgroups over �nite subextensions).(3) G1+nlog = G0+log is the wild rami�
ation subgroup of G (inverse limit ofwild rami�
ation subgroups over �nite subextensions).(4) For any a > 0, we have in
lusions Ga+1nlog ⊆ Galog ⊆ Ganlog (whi
h arestri
t in
lusions if K is not perfe
t).(5) If K is perfe
t, we have Ga+1nlog = Galog = Ga for all a > 0; here (Ga) isusual upper rami�
ation �ltration.(6) If K ′=K is a �nite unrami�ed extension, then both �ltrations on GK′are indu
ed by those on GK .(7) IfK ′=K is a �nite tame extension with e(K ′=K) = m, then (GK′)malog =(GK)alog for any a > 0.(8) If K ′=K is any �nite extension with e(K ′=K) = m, then (GK′)malog ⊂(GK)alog for any a > 0.The following is a typi
al example of rami�
ation breaks.6.1.1. Example. LetK = K((�)) be an equal 
hara
teristi
 
omplete dis
retevaluation �eld and let L = K(z) be an Artin-S
hreier extension given byzp − z = a�−n for a ∈ K[[�℄℄∗ and n ∈ N. We assume that the generator z is
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hosen so that n is minimal (see §2). The Galois group Gal(L=K) is isomorphi
to Z=pZ.(1) If p ∤ n, then we have bnlog(L=K) = n+ 1 and blog(L=K) = n.(2) If p|n, then we have blog(L=K) = bnlog(L=K) = n.Another important property of these two upper rami�
ation �ltrations isthe integrality of the asso
iated Artin and Swan 
ondu
tors. For a �nite dimen-sional representation � : GK → GL(V ) with �nite image, we put bnlog(�) =bnlog(V ) := bnlog(L=K) and blog(�) = blog(V ) := blog(L=K), where L is the�nite extension of K 
orresponding to the kernel of �. Under very mild te
h-ni
al restri
tions, these rami�
ation �ltrations enjoy the following Hasse{Arfproperty, as proved in [X10, X12a℄.6.1.2. Theorem. Assume either K is of equal 
hara
teristi
, or p > 2 andK is not absolutely unrami�ed (i.e. p is not an uniformizer). Let � : GK →GL(V ) be an irredu
ible representation with �nite image. Then the Artin 
on-du
tor Art(�) := bnlog(�)·dim � and the Swan 
ondu
tor Sw(�) := blog(�)·dim �are integers.6.2. Re�ned Artin/Swan 
ondu
tors. It is a natural question to askwhether one 
an obtain information about the graded pie
es of the rami�-
ation �ltrations. The following theorem is proved with some restri
tions in[AS03, Sa09, X12a℄ and, in full generality, in [Sa12℄.6.2.1. Theorem. The graded pie
es graG•nlog := Ganlog=Ga+nlog (a > 1) andgraG•log := Galog=Ga+log (a > 0) are abelian groups of exponent p. Moreover,there is a natural inje
tive homomorphismrsw : Hom(graG•log;Fp) ,→ 
1
OK (log)⊗OK m

−aKalg=m(−a)+Kalg ; a ∈ Q>0;where 
1
OK (log) := 
1

OK + OK d�K�K , m
−aKalg := {x ∈ Kalg | vK(x) > −a}, and

m
(−a)+Kalg := {x ∈ Kalg | vK(x) > −a}.Following Kato, the map above is 
alled the re�ned Swan 
ondu
tor homo-morphism. When K is of equal 
hara
teristi
, there is an analogous naturalinje
tive homomorphism, 
alled the re�ned Artin 
ondu
tor homomorphismrar : Hom(graG•nlog;Fp) ,→ 
1

OK ⊗OK m
−aKalg=m(−a)+Kalg ; a ∈ Q>1:See [X12b℄ for more details. The analogous re�ned Artin 
ondu
tor homomor-phism is also expe
ted in the mixed 
hara
teristi
 
ase, using a variant of theargument of [Sa12℄.



26 L. XIAO, I. ZHUKOVWhen K is �nite and a a positive integer, the rsw map is 
ompatible withthe natural homomorphism in lo
al 
lass �eld theory in the following way:Hom((Gab)a=(Gab)a+;Fp) //LCFT
��

Hom(graG•log;Fp)rsw
��Hom(Ua;K=Ua+1;K ;Fp) log∨

// 
1
OK (log)⊗OK m

−aKalg=m(−a)+KalgwhereGab denotes the abelianized Galois group with the indu
ed �ltration, theleft verti
al map is the isomorphism from the lo
al 
lass �eld theory, and themap log∨ is 
hara
terized below. For a homomorphism � : Ua;K=Ua+1;K → Fp,its image log∨(�) is the element w��−aK d�K�K for w� ∈ K su
h that�(1 + x�aK) = trK=Fp(xw�):6.2.2. Example. Continuing with the setup in Example 6.1.1, we �x a gen-erator z. Fixing the isomorphism K ∼= K((�)), we have
1
OK ⊗OK K ∼= 
1K ⊕Kd� and 
1

OK (log)⊗OK K ∼= 
1K ⊕Kd�� :Let d�a be the usual di�erential of �a in 
1K ; it is zero if and only if �a is a pthpower inK. We 
an also view this element in 
1
OK⊗OKK and 
1

OK (log)⊗OKKusing the dire
t sum de
omposition above.There is a natural isomorphism � : Gal(L=K)→Fp given by � 7→�(z)−z∈Fp.This � indu
es a homomorphism from grbnlog(L=K)G•K;nlog or grblog(L=K)G•K;logto Fp, whi
h we still denote by �. Then the images of � under the re�ned Artinand Swan 
ondu
tor homomorphisms are as follows.In 
ase (1), rar(�) = �−n−1nad� and rsw(�) = �−n(nad�� + d�a).In 
ase (2), rar(�) = �−nd�a and rsw(�) = �−nd�a. (They are not literallythe same be
ause they live in di�erent spa
es.)One 
an 
he
k that the re�ned Swan and Artin 
ondu
tors do not dependon the 
hoi
e of z.6.2.3. Question. When K is perfe
t, one 
an 
he
k that the re�ned Swan
ondu
tor homomorphism is in fa
t an isomorphism. (This is a folklore result,and, to our best knowledge, it has not appeared in the literature.) When Kis not perfe
t, is the re�ned Swan 
ondu
tor homomorphism still an isomor-phism? What about the analogous re�ned Artin 
ondu
tor homomorphism?This appears to be a very deep question regarding the stru
ture of the Galoisgroup GK .



RAMIFICATION OF HIGHER LOCAL FIELDS 276.3. Multi-index �ltration for higher dimensional �elds. Using there�ned Swan 
ondu
tor, one 
an naturally asso
iate a multi-index (upper)�ltration for an m-CDVF K as follows. We will only treat the 
ase with loga-rithmi
 rami�
ation �ltration and when the last residue �eld k0 is perfe
t tosimplify the notation; one 
an easily modify the 
onstru
tion to adapt to thegeneral 
ase and to the non-logarithmi
 
ase.Let K be an m-CDVF with the �rst residue �eld km−1. Assume the lastresidue �eld k0 is perfe
t. We �x a system of lo
al parameters t1; : : : ; tm. Inthis 
ase, we have 
1
OK (log)⊗OK km−1 = m⊕i=1 km−1 dtiti :For im ∈ Q>0 and for � = ∑mi=1 �i dtiti ∈ 
1

OK (log)⊗OK t−imm kalgm−1, we setvlog(�) = min{v(�1); : : : ;v(�m)}:This gives a multi-index valuation on 
1
OK (log)⊗OK t−imm kalgm−1.We put Qm>0 = {i ∈ Qm | im > 0}. For i = (i1; : : : ; im) ∈ Qm>0, we 
an de�nea �ltration on G := GK by the following 
hara
terization:Gilog := {� ∈ Gimlog ∣∣�(�) = 0 for all � : grimG•log → Fpsu
h that vlog(rsw(�)) > −i}:6.3.1. Question. When K has �nite last residue �eld, does this multi-index�ltration on GabK agree with the one de�ned by (12) (with l = 1), whi
h usesthe Milnor K-group Ktopm K? This amounts to 
omparing the re�ned Swan
ondu
tor homomorphism with the one de�ned by Kato for 
hara
ters of GabK .The 
omparison is expe
ted by experts. In the equal 
hara
teristi
 
ase, this isproved in [AS09℄ and also appears impli
itly in Chiarellotto and Pulita [ChP℄.But in the mixed 
hara
teristi
, to our best knowledge, it has not appeared inthe literature.6.4. Constru
tion of the �ltration d'apr�es Abbes and T. Saito. Nowwe pro
eed to des
ribe the 
onstru
tion of the upper rami�
ation �ltrationsin the general 
ase developed by Abbes and T. Saito [AS02℄.Abbes and T. Saito made use of rigid analyti
 spa
es. (We refer to [BGR℄for basi
s of rigid analyti
 spa
es.) Their 
onstru
tion is motivated by thefollowing 
ru
ial but easy proposition in the 
ase of perfe
t residue �eld.6.4.1. Proposition. Let K be a 
omplete dis
rete valuation �eld with perfe
tresidue �eld. Let L be a �nite Galois extension of K with Galois group GL=K .We know that OL is generated as an OK-algebra by one element x. Let P (u)denote the minimal polynomial of x.



28 L. XIAO, I. ZHUKOV(i) Let b(L=K) be the highest rami�
ation break as de�ned just before Examp-le 1.1.1. We assume that L=K is not unrami�ed so that b(L=K) > 0. Thenb(L=K) = 1e(L=K)( ∑�∈GL=K ; � 6=1 vL(�(x) − x) + max�∈GL=K ; � 6=1 vL(�(x)− x)):(ii) Consider the rigid analyti
 spa
e for ea
h positive rational number a:Xa = {u ∈ Kalg : |u| 6 1; |P (u)| 6 |�K |a}:The spa
e Xa has [L : K℄ geometri
 
onne
ted 
omponents if and only ifa > b(L=K).Proof. The �rst statement is straightforward if one unwinds the de�nition ofthe upper rami�
ation �ltration.A rigorous proof of (ii) 
an be found in [AS02, Lemma 6.6℄. We will give arough idea of why this is true. The pi
ture here is that, if a is very large, we
on�ne u in some very small neighborhoods of the roots of P (u) = 0, or equiv-alently the 
onjugates of x. The rigid spa
e Xa is expe
ted to be geometri
allya disjoint union of very small disks 
entered at ea
h of the 
onjugates of x.In other words, Xa should have [L : K℄ geometri
 
onne
ted 
omponents. In
ontrast, when a→ 0+, the 
ondition |P (u)| < |�K |a is signi�
antly weakened,and Xa is almost the whole disk |u| 6 1.When the rational number a de
reases from a big starting value, the disksgrow larger. Consider the �rst moment su
h that some of the [L : K℄ disks
lash together, and the number of geometri
 
onne
ted 
omponents de
reases.We need to show that the rational number a at this moment is exa
tly thehighest rami�
ation break b(L=K). Indeed, the 
ut-o� 
ondition is obviously
|u − x| < min�∈GL=K ;� 6=1 |�(x) − x| (or with a 
onjugate of x in pla
e of x).This implies that |u− �(x)| = |�(x) − x| for � 6= 1. Thus

|P (u)| = ∏�∈GL=K |u− �(x)| = |u− x| ∏�∈GL=K |�(x)− x| < |�K |b(L=K):In fa
t, this explanation 
an be turned into a 
omplete proof if it is arguedmore 
arefully. �Imitating this des
ription in the general 
ase, Abbes and T. Saito gave thefollowing 
onstru
tion. Let K be a 
omplete dis
rete valuation �eld and La �nite Galois extension of K. Suppose that OL is generated by x1; : : : ; xras an OK-algebra. Then we may write OL as the quotient OK [u1; : : : ; ur℄=(f1; : : : ; fs) ≃ OL, where the isomorphism sends ui to xi, and {f1; : : : ; fs} issome set of generators of the ideal. For a positive rational number a, 
onsider
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 spa
eXaL=K := {u = (u1; : : : ; ur) ∈ (Kalg)r : |u1| 6 1; : : : ; |ur| 6 1;
|f1(u)| 6 |�K |a; : : : ; |fs(u)| 6 |�K |a }:Put G = GK for simpli
ity. Inspired by Prop. 6.4.1, we want to de�ne the(upper) rami�
ation �ltration Gbnlog of G so that XaL=K has [L : K℄ geometri

onne
ted 
omponents if and only if a > bnlog(L=K). It is not diÆ
ult to seethat the spa
e XaL=K does not depend on the 
hoi
e of fi's, and the set ofgeometri
 
onne
ted 
omponents �geom0 (XaL=K) does not depend on the 
hoi
eof ui's (be
ause adding a new generator is equivalent to 
hanging XaL=K to a�ber bundle over XaL=K whose �bers are disks). Thus, our 
onstru
tion is wellde�ned, depending only on L.Abbes and T. Saito [AS02℄ prove the existen
e of su
h rami�
ation �ltra-tion using 
ertain abstra
t framework of \Galois fun
tor" by studying fun
torsfor all rational a that take every �nite Galois extension L of K to the set ofgeometri
 
onne
ted 
omponents �geom0 (XaL=K). They 
all this �ltration thenon-logarithmi
 rami�
ation �ltration Ganlog for a ∈ Q>0. They also give a log-arithmi
 variant of the 
onstru
tion whi
h de�nes the logarithmi
 rami�
ation�ltration Galog for a ∈ Q>0. For details, we refer to [AS02℄. For later referen
ewhen 
omparing di�erent de�nitions of the �ltrations, we will refer to thesetwo �ltrations as the Abbes{Saito �ltrations.The following 
omparison theorem is proved partially in [ChP℄ and in fullin [AS09℄.6.4.2. Theorem. Kato �ltration on Gab agrees with the �ltration indu
edfrom the Abbes{Saito non-logarithmi
 �ltration on G = GK. Moreover, there�ned Swan 
ondu
tor de�ned in [Ka89℄ is 
ompatible with the re�ned Swan
ondu
tor homomorphism de�ned in Theorem 6.2.1.We also mention that Abbes{Saito's 
onstru
tion 
an be applied to �nite
at group s
hemes over OK and it de�nes a rami�
ation �ltration on the groups
hemes. For progress along this line, see [AM, Ha12, Ha12+℄. This result maybe used to prove the existen
e of 
anoni
al subgroups for a p-divisible groupwith small degree; see [Ti℄.6.5. Constru
tion of the �ltrations by p-adi
 di�erential equations.Another useful equivalent de�nition of the rami�
ation �ltration is based onthe theory of p-adi
 di�erential equations.We �rst 
onsider the 
ase when K = K((�)) is of equal 
hara
teristi
 andK is perfe
t. Put F =W (K)[1p ℄. Consider the following bounded Robba ring,



30 L. XIAO, I. ZHUKOVfor r ∈ (0; 1) ∩ pQ:
Rrbdd := { ∑n∈Z

anT n∣∣∣∣ an ∈ F; |ai| is bounded, and limi→−∞ |ai| · ri = 0}:It is the ring of analyti
 fun
tions on the annulus r 6 |T | < 1 whi
h takebounded values.Let V be an irredu
ible p-adi
 representation of G = GK with �nite im-age. The theory of Fontaine (see, e.g., [Ke05, Se
tion 4℄) asso
iates V with adi�erential module over Rrbdd for some positive rational number r suÆ
iently
lose to 0, that is a �nite free module F = FV over Rrbdd equipped with a
onne
tion
∇ : F → F ⊗Rrbdd 
1

Rrbdd=F :This is equivalent to giving a derivation � = ddT on F (satisfying Leibniz rule).This 
onstru
tion gives the a

ess to the full power of the theory of p-adi
di�erential equations in the study of the rami�
ation of G. For r′ ∈ pQ withr′ ∈ [r; 1), we use F (T )(r′) to denote the 
ompletion of F (T ) with respe
t tothe r′-Gauss norm, that is the norm extending the following norm | · |(r′) onF [T ℄: ∣∣
∑n>0 anT n∣∣(r′) = maxn>0 {|an|r′n}:We pi
k a norm | · |F ;(r′) on F (r′) := F ⊗Rrbdd F (T )(r′) and 
onsider the spe
tralnorm
|�|sp;F ;(r′) := limn→∞ |�n|1=nF ;(r′);where |�n|F ;(r′) is the operator norm of �n. The spe
tral norm does not dependon the 
hosen norm | · |F ;(r′) on F (r′). This is one of the key invariants of ap-adi
 di�erential equation. It was explained by Kedlaya in [Ke05℄ (based onthe work of Christol{Mebkhout, Crew, Matsuda, Tsuzuki) that the highestrami�
ation break b(V ) has the following 
hara
terization by spe
tral norms:for r′ suÆ
iently 
lose to 1−; |�|sp;F ;(r′) = p−1=(p−1) · (r′)−b(V )−1:A generalization of this approa
h without the perfe
tness of K is introdu
edby Kedlaya in [Ke07℄. Assume that K has a �nite p-basis (as the general 
aseredu
es to this 
ase). The 
onstru
tion works formally the same ex
ept thefollowing 
hanges:

• The �eld F is taken to be the fra
tion �eld of a Cohen ring of K; herethe Cohen ring is an absolutely unrami�ed 
omplete dis
rete valuationring with residue �eldK; we refer to [Wh℄ for a fun
torial 
onstru
tionof Cohen rings.
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• We have the derivation �0 = ddT as well as other derivations �1; : : : ; �n
oming from a 
hosen p-basis of K. Using this, Kedlaya de�nes the log-arithmi
 di�erential rami�
ation �ltration su
h that for r′ suÆ
iently
lose to 1−,max{

|�0|sp;F ;(r′) · r′; |�1|sp;F ;(r′); : : : ; |�n|sp;F ;(r′)} = p−1=(p−1) · (r′)−blog(V );(13)where, as before, blog(V ) is the highest rami�
ation break de�ned bythe logarithmi
 di�erential rami�
ation �ltration.A di�erent normalization in the above formula by removing the fa
tor r′ inthe �rst term of (13) gives rise to the di�erential non-logarithmi
 rami�
ation�ltration.The di�erential rami�
ation �ltrations enjoy the following properties.(1) Kedlaya [Ke07℄ proves the Hasse{Arf property (as in Theorem 6.1.2),using the integrality of Newton polygons. (One 
an alternatively de-du
e this by redu
ing to the perfe
t residue �eld 
ase.)(2) It is proved in [X10℄ that Kedlaya's di�erential rami�
ation �ltrationagrees with Abbes-Saito �ltration; this then proves Theorem 6.1.2 inthe equal 
hara
teristi
 by transferring the Hasse{Arf property throughthe 
omparison. Same result for one-dimensional representations waspriorly obtained by Chiarellotto and Pulita [ChP℄.(3) In the equal 
hara
teristi
 
ase, [X12b℄ realizes the re�ned Swan 
on-du
tor homomorphism using p-adi
 di�erential modules; this is re-lated to the eigenvalues of the matri
es for the di�erential operators�0; : : : ; �n, a
ting on an appropriate basis of F . [X12b℄ further relatesthe re�ned Swan 
ondu
tor homomorphism to the variation of Swan
ondu
tor (see Subse
tion 10.2).(4) When K is of mixed 
hara
teristi
 under some mild 
ondition, it isproved in [X12a℄ that one 
an \fake" the Robba ring 
onstru
tion aboveand apply re
ent results [Ke10a, KeX℄ on p-adi
 di�erential equationsto dedu
e the Hasse{Arf theorem.6.5.1. Question. Can we realize the re�ned Swan 
ondu
tor homomorphismin the mixed 
hara
teristi
 
ase, using 
ertain fake Robba ring 
onstru
tion?6.6. Geometri
 
onstru
tion based on Abbes{Saito's original de�ni-tion. Soon after the introdu
tion of Abbes{Saito �ltrations, Abbes and Saitogave the following geometri
 reinterpretation of the de�nition, whi
h aims ata more global appli
ation.To start, we �rst assume that K is of equal 
hara
teristi
 and satis�es thefollowing 
ondition:
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heme X over a �eld k and an irredu
ibledivisor D smooth over k with the generi
 point �, su
h that K is isomorphi
to the 
ompletion of k(X) with respe
t to the valuation given by �.Properties for a general equal 
hara
teristi
 �eld K may be redu
ed to the
ase with this 
ondition by taking 
ertain limit.Now, given a �nite dimensional irredu
ible l-adi
 representation � of GK ,we may realize it as an l-adi
 sheaf F = F� over U := X\D, possibly aftershrinking X. Using vanishing 
y
les, T. Saito [Sa09℄ gives a 
onstru
tion that
an dete
t the highest logarithmi
 rami�
ation break b := blog(�), whi
h wereview here.Let ID denote the ideal sheaf for the 
losed immersionD ⊂ X. Let (X×X)′be the blow-up of X ×X along D×D. Let (X ×X)∼ denote the 
omplementof the proper transform of (X × D) ∪ (D × X). Let ~u : (X × X)∼ → Xdenote the natural proje
tion to the �rst fa
tor. The diagonal embeddingU → U×U ⊂ (X×X)∼ extends to a natural embedding ~Æ : X → (X×X)∼. Let
JX denote the ideal sheaf for this 
losed immersion. Let ~j : U×U → (X×X)∼denote the natural in
lusion.For a ∈ Q>0, we use (X × X)(a) denote the normalization of the s
hemeasso
iated to the quasi-
oherent sub-O(X×X)∼ -modules

∑n∈N

~u∗(OX(⌊na⌋D)) · J nX ⊂ ~j∗OU×U : (Here, ⌊·⌋ is the 
oor fun
tion:)When a is a positive integer, this is one of the open 
harts for the blow-up of(X ×X)∼ along the ideal sheaf ~u∗(ID)a + JX .We use the following notation for morphisms:U j
//Æ

��

XÆ(a)
��U × U j(a)

// (X ×X)(a)Put H := Hom(pr∗2F ;pr∗1F). T. Saito [Sa09℄ proves that6.6.1. Proposition. The highest log rami�
ation break blog(�) 6 a if and onlyif the base 
hange map Æ(a)∗j(a)∗ H → j∗End(F)is an isomorphism at the generi
 point � of D.When the 
ondition of the proposition is satis�ed, the restri
tion of j(a)∗ Hon the 
omplement (X ×X)(a)\(U ×U) is a dire
t sum of the Artin{S
hreier
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ertain linear forms. These linear forms give rise to there�ned Swan 
ondu
tor homomorphism. See [Sa09℄ for more details.When the �eld K is of mixed 
hara
teristi
, T. Saito [Sa12℄ imitates theequal 
hara
teristi
 
onstru
tion to make sense of X ×k X using in�nitesimaldeformations. It would be interesting to see if one 
an put T. Saito's 
onstru
-tion in a more global setting for 
omplete regular rings of mixed 
hara
teristi
,and obtain global results similar to those in [Sa09℄.6.7. Alternative 
onstru
tions of upper �ltrations. We now explainsome other 
onstru
tions of upper rami�
ation �ltrations.Borger [Bo04, Bo02℄ 
onstru
ts a non-logarithmi
 rami�
ation �ltration us-ing a \generi
 residual perfe
tion" pro
ess. His result is based on the followingobservation: taking OK = Fp(x)[[�℄℄ as an example, a na��ve idea would be toredu
e the de�nition of rami�
ation �ltrations to the 
ase of perfe
t residue�eld, by adjoining p∞-roots of x. Note that x should be thought of as a liftof the x of the residue �eld. But there is no 
anoni
al su
h lift, as one 
ould
hoose, for example, x+ � instead and adjoin all p∞-roots of x+ �. Borger'sidea is to introdu
e an indeterminate u1 and 
onsider Fp(x; u1)[[�℄℄; he thenadjoins all p∞-roots of x+u1�. Next, he has to deal with p-power roots of u1.For this, he adjoins another indeterminate u2 and all p∞-roots of u1 + u2�.Continuing this pro
ess and \taking limit" gives a \generi
 perfe
tion of OK".To present this observation systemati
ally, Borger showed that there is amoduli spa
e Spf(Au) that parameterizes the ways of modifying OK so thatits residue �eld is perfe
t. In the example above,Au = Fp(x)[u1; u2; : : : ℄[[�℄℄[(x + u1�)1=p∞ ; (u1 + u2�)1=p∞ ; : : : ℄:Let Ag denote the the 
ompletion of Au at the generi
 point of its spe
ial �ber.Then Q(Ag) is a 
omplete dis
rete valuation �eld with perfe
t residue �eld.We may then use the natural map GK → GQ(Ag) to de�ne an (upper) ram-i�
ation �ltration on GK as the preimage of the rami�
ation �ltration on thelatter group. Borger [Bo04℄ proves that the Artin 
ondu
tor given by his non-logarithmi
 rami�
ation �ltration is 
ompatible with the \non-logarithmi
"(Artin-like) version of Kato 
ondu
tor. It is later proved in [X10℄ that, whenK is of equal 
hara
teristi
, Borger's (non-logarithmi
) �ltration agrees withAbbes-Saito non-logarithmi
 �ltration. In the mixed 
hara
teristi
 
ase, a sim-ilar argument used in [X10℄ relates Abbes{Saito non-logarithmi
 �ltration witha variant of Borger's �ltration (see [X12a, Remark 3.2.14℄). It would be inter-esting to see if the two �ltrations are exa
tly the same.Boltje, Cram and Snaith (see [BCS℄, [Sn, 6.3℄) de�ne a 
ondu
tor in thegeneral 
ase by means of expli
it Brauer indu
tion. This results in a 
ondu
tor
ompatible with Swan 
ondu
tor and Kato{Swan 
ondu
tor in the 
ases where



34 L. XIAO, I. ZHUKOVthose are de�ned. As of yet, we are not aware of any attempt to 
ompare theapproa
h of Boltje{Cram{Snaith with other 
onstru
tions mentioned above.One more approa
h is initiated in [Z13, Z14℄. It is based on 
onsiderationof 
omposites of a given �nite extension with various (in�nite) elementaryabelian extensions.6.8. A generalization of the theorem of Deligne. As it was dis
ussed inSubse
tion 3.10, one expe
ts to be able to asso
iate quotient of Galois groupsto trun
ated dis
rete valuation rings. More 
on
retely, 
onsider two 
ompletedis
rete valuation �elds K and K ′ and assume that there exists b ∈ N su
hthat there is an isomorphism OK=�bKOK ≃ OK′=�bK′OK′ as rings. Unlike inSubse
tion 3.10, we do not assume that the residue �eld K = K ′ is perfe
t.6.8.1. Question. Does this isomorphism of rings still imply thatGK=GbK;nlog ∼= GK′=GbK′;nlog and GK=GbK;log ∼= GK′=GbK′;log?Are these isomorphisms of quotient groups 
anoni
al? Moreover, are they 
om-patible with the re�ned Swan{Artin 
ondu
tor homomorphisms?In the non-logarithmi
 
ase, it appears that Hiranou
hi and Tagu
hi [HT℄have started a proje
t towards proving the isomorphism of quotients of Galoisgroups. See also the survey paper [Hi℄.6.9. Ve
tor bundles with irregular singularities. It is quite well knownthat there is a strong analogy between representations of GK (when K isperfe
t) and di�erential modules over C((T )), that is �nite dimensional ve
torspa
es V over C((T )) equipped with a derivation � = ddT (i.e. �(av) = �(a)v+a�(v) for a ∈ C((T )) and v ∈ V ). Su
h a module is 
alled regular if T�preserves a C[[T ℄℄-latti
e � of V . For P ∈ C((T )), we 
an de�ne a rank onedi�erential module E(P ) = C((T )) · e su
h that �(e) = Pe.The Turrittin{Levelt{Hukuhara Theorem (see, e.g., [Ke10a, Se
tion 7.5℄)says that there exists n ∈ N su
h that we have a de
ompositionV ⊗C((T )) C((T 1=n)) ∼= ⊕ri=1Vi;where ea
h Vi is of the form Vi = E(Pi) ⊗ Ri for an element Pi ∈ C((T 1=n))and a regular module Ri over C((T 1=n)).The analogous invariant of rami�
ation break is just max{0;−vC((T ))(Pi)}.We de�ne the irregularity of V to beIrr(V ) := r∑i=1 dimVi ·max{0;−vC((T ))(Pi)}:
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an give an interpretation of this invariant in terms of the spe
tral normsof the di�erential operators �. For details, see [Ke10a, X12b℄.In the general 
ase when K = K((T )) with K of 
hara
teristi
 zero, theremight be additional derivations �1; : : : ; �n on K. For example, when K =
C(x; y), we may 
onsider the derivations �1 = ddx and �2 = ddy . We 
onsidera di�erential module V over K((T )), that is a �nite dimensional ve
tor spa
eK((T )) equipped with 
ommuting a
tions of �0 = ddT ; �1; : : : ; �n. When V isirredu
ible, one 
an de�ne the irregularity of V by taking the maximum amongall irregularities 
omputed by the spe
tral norms of all di�erential operators.For general V , its irregularity is de�ned to be the sum of the irregularities overall Jordan{H�older 
onstituents. For the details, we refer to [X12b℄.Similarly, one 
an de�ne a re�ned irregularity as an analog of the re�nedSwan 
ondu
tor for Galois representations. This is explained in [X12b℄.

§7. Elimination theory7.1. The expe
tations. We see that the Kato{Swan 
ondu
tor as well asthe Abbes{Saito rami�
ation �ltration work perfe
tly in all the situationswhere one needs the rami�
ation invariants that \live downstairs", i.e., for anextension L=K, those invariants that are more 
losely atta
hed to K than toL. These in
lude multiple questions related to the absolute Galois group of a
omplete dis
rete valuation �eld, or, in algebrai
 geometry, to the �etale site ofan algebrai
 or arithmeti
 variety.In other words, probably we have the best possible \upper rami�
ation�ltration".3 However, in general we 
annot re
over the usual (lower) rami�
a-tion �ltration from it. There are no Hasse{Herbrand fun
tions, and we 
annotwrite down any analogs with fun
torial properties as in Subse
tions 3.2{3.5.The reason for this is rather fundamental: any single rami�
ation �ltration aswell as any theory of Swan-type 
ondu
tor des
ribes the rami�
ation of anextension of degree p with just one number. But we saw in the example in §4that a \
omprehensive" rami�
ation theory should provide more informationin this 
ase. Indeed, in (11) we have to know not only n and N but also m.Also, we have no formula for the order of di�erent (or depth)4 in terms of theupper breaks whi
h would be a substitute for (10). The best possible estimatesin the 
ase of an n-dimensional lo
al �eld (with �nite last residue �eld) are3The terminology is absolutely misleading! The upper rami�
ation breaks live downstairs,and the lower ones live upstairs.4The order of di�erent and the depth 
an be 
onsidered as invariants that \live in themiddle".



36 L. XIAO, I. ZHUKOVgiven by Hyodo inequalities (see [Hy, Th. (1-5), Prop. (3-4), Ex. (3-5)℄):(p− 1)∑l>1 jL=K(l)pl 6 dK(L=K) 6
p− 1p ∑l>1 jL=K(l); (14)where jL=K(l) are de�ned in (12).A possible distant goal for further investigations of rami�
ation in the im-perfe
t residue �eld 
ase 
ould be to 
onstru
t a 
ertain system of invariants�(L=K) for any �nite extension L=K whi
h would 
ompletely des
ribe therami�
ation of L=K. This vague desire 
an be made more spe
i�
 by listingat least the following requirements.(1) \Na��ve" rami�
ation invariants (rami�
ation index, order of di�erent,genome, Artin and Swan rami�
ation numbers) as well as other importantinvariants (su
h as Abbes{Saito 
ondu
tor) 
an be expressed in terms of�(L=K).(2) Rami�
ation of intermediate extensions (i.e., �(L=M) and �(M=K))
an be expressed in terms of �(L=K); reasonable base 
hange properties inspirit of Prop. 3.3.2 are available.(3) Lo
al terms of appropriate global formulas 
an be expressed in terms of�(L=K).Of 
ourse, it would be ni
e to have more expli
it set of requirements, whi
h
ould possibly take the form of a 
ertain \axiomati
 rami�
ation theory".However, we have a lot to learn at phenomenologi
al level before this be
omesfeasible.7.2. Ba
kground. Here we dis
uss a theory produ
ing some additional ram-i�
ation information that 
an be organized in analogs of the lower and upper�ltrations. The approa
h, orginated in [Ka87℄, is based on two observations.1. The Herbrand theorem (5) is true not only in the 
lassi
al 
ase but, moregenerally, in all the monogeni
 
ases, i.e., whenOL = OK [x℄ for some x. Conse-quently, the rami�
ation invariants of monogeni
 extensions, de�ned in a usualmanner, possess all the usual fun
torial properties. The inverse statement isalso true; more pre
isely (see [Sp99, Prop. 1.5.2℄).7.2.1. Proposition. Let L=K be a �nite Galois p-extension. Then the fol-lowing properties are equivalent:(i) OL = OK [x℄ for some x;(ii) for every normal subgroup H of G the Herbrand property (5) holds;(iii) the Hilbert formula holds:vL(DL=K) = ∑� 6=1 iG(�) = ∑i>0(|Gi| − 1):
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h extensions are 
alled well rami�ed. There are three types ofwell rami�ed extensions.Case I. All the extensions with separable L=K .Case II. All the weakly unrami�ed extensions su
h that L=K is generatedby 1 element. (In parti
ular, if K is a two-dimensional lo
al �eld, or, moregenerally, if [K : Kp℄ = p, then all weakly unrami�ed extensions of K are wellrami�ed.)Case III. Those well rami�ed extensions that belong neither to Case I norto Case II. Spriano showed that for any L=K from Case III there exists anintermediate �eld M su
h that M=K is in Case I, and L=M is in Case II. Ageneral des
ription of Case III extensions was given in [HLF, Se
t. I, §18℄ and[Sp00℄.For us, the above remark on two-dimensional �elds is important.2. Let L=K be any �nite Galois extension of 
omplete dis
rete valuation�elds with imperfe
t residue �elds of 
hara
teristi
 p > 0, and let k be a 
on-stant sub�eld of K, i.e., a maximal 
omplete sub�eld of K with perfe
t residue�eld. (If 
harK = 0, su
h a sub�eld is unique.) Epp's theorem on eliminationof wild rami�
ation [E℄ (
orre
tions in [P℄ and [Kuhl℄) asserts that there existsa �nite extension k′=k su
h that k′L=k′K is weakly unrami�ed. The paper[KZ℄ 
ontains various re�ned versions of Epp's theorem, with appli
ations to
lassi�
ation of higher lo
al �elds.7.3. Constru
tion. Now we are ready to des
ribe the 
onstru
tion from[Z03℄ and [HLF, Se
t. I, §17℄. For a given 
omplete two-dimensional5 dis
retevaluation �eld K, �x a 
onstant sub�eld k. An extension L=K is said to be
onstant if L = k′K and almost 
onstant, if L ⊂ k′Ku, where k′=k is a �niteextension, and Ku=K is an unrami�ed extension. We say that a �eld L isstandard if a prime element of its 
onstant sub�eld is also a prime elementof L. The 
hoi
e of a 
onstant sub�eld k in K determines a 
onstant sub�eldl in L whi
h is algebrai
 over k.For any �nite Galois extension L=K denote by L0 the inertia sub�eld inL=K and by L
=K the maximal almost 
onstant subextension in L=K. Theidea is to indu
e:(1) the rami�
ation �ltration on Gal(L
=L0) by the �ltration for the 
orre-sponding 
onstants sub�elds;(2) the rami�
ation �ltration on Gal(L=L
) by the �ltration on an iso-morphi
 group Gal(k′L=k′L
), where k′=k is a �nite extension that makesGal(k′L=k′L
) weakly unrami�ed by Epp's theorem (and even fero
ious inview of the de�nition of L
).5i.e. su
h that [K : Kp℄ = p.



38 L. XIAO, I. ZHUKOVNamely, introdu
e a set
I = {−1; 0} ∪ {(
; i)|i ∈ Q; i > 0} ∪ {(
;∞)} ∪ {(i; i)|i ∈ Q; i > 0}with linear order

−1 < 0 < (
; i) < (i; j) for any i; j;(
; i) < (
; j) for any i < j;(i; i) < (i; j) for any i < j.This will be the index set for lower and upper numbering of new rami�
ationsubgroups.Let G = Gal(L=K). We put G−1 = G, and denote by G0 the usual inertiasubgroup in G.To introdu
e subgroups G(
;i) = G
;i, we 
onsider �rst the 
ase when L
=Kis 
onstant and 
ontains no unrami�ed subextension. Then L
 = lK, and wehave a natural proje
tionp : Gal(L=K) → Gal(L
=K) = Gal(l=k) = Gal(l=k)0:Then we put G
;i = p−1(Gal(l=k)i). In the general 
ase take an unrami�ed ex-tensionK ′=K su
h that K ′L=K ′ 
ontains no unrami�ed subextension, and themaximal almost 
onstant subextension in K ′L=K ′ (i.e., K ′L
=K ′) is 
onstant.We put G
;i = Gal(K ′L=K ′)
;i. Next,G
;∞ = Gal(L=L
) = G
;mfor m big enough.Assume that L
 is standard and L=L
 is fero
ious. Let t ∈ OL, t =∈ Lp. Wede�ne G
;i = {g ∈ Gal(L=L
)|vK(g(t) − t) > i} (15)for all i > 0.In the general 
ase 
hoose a �nite extension l′=l su
h that l′L
 is standardand e(l′L=l′L
) = 1; this is possible by Epp's theorem. Then Gal(l′L=l′L
) =Gal(L=L
), and l′L=l′L
 is fero
ious. We de�neG
;i = Gal(l′L=l′L
)
;i = Gal(l′L=l′K)
;ifor all i > 0; these groups are independent of the 
hoi
e of l′ sin
e we used vK(and not vL) in (15).This gives a well-de�ned lower rami�
ation �ltration on G indexed by I; one
an de�ne Hasse{Herbrand fun
tions from I to I with usual properties and,
onsequently, 
onstru
t the upper �ltration. The 
ompatibility with subgroupsand fa
tor groups mimi
s that of the 
lassi
al 
ase, and a rami�
ation �ltrationfor in�nite Galois extensions is de�ned.
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an note also that we obtained �ltration (on �nite Galois groups) whi
hfa
tors Gi=Gi+ are abelian for i > 0 (even elementary abelian for i > 0). Thiswould not be true if we did not 
onsider the 
ontribution of 
-part. For a 2-dimensional lo
al �eld, one 
ould also de�ne a re�ned I2-�ltration using rank2 valuations in the i-part [Z03, §4℄.7.4. Further properties. There exists also a partial result on 
ompati-bility with the higher 
lass �eld theory. Namely, for an equal 
hara
teristi
2-dimensional lo
al �eld K with �nite residue �eld, one 
an de�ne expli
-itly an I2-�ltration on Ktop2 K whi
h 
oin
ides with the inverse image of therami�
ation �ltration on Gal(Kab=K) with respe
t to the re
ipro
ity map�K : Ktop2 K → Gal(Kab=K), see [Z03, §6℄.It is not so easy to do the same in the mixed 
hara
teristi
 
ase be
ause ofthe more 
ompli
ated Gal(Kab=K) and the presen
e of p-torsion elements inKtop2 K. In parti
ular, the following question is of interest.7.4.1. Question. What is CK = �−1K (Gal(Kab=Kab
 ))?By the results of Miki [Mik74℄, any extension of K with the Galois group
Zp is almost 
onstant. This means that K�=K, the 
ompositum of all Zp-extensions, is a subextension ofKab
 =K. On the other hand,Kab
 = kabKab;ur =kabKab;tr, and it is easy to see that K�Kab;tr = k�Kab;tr, where Kab;ur=K(resp. Kab;tr=K) is the maximal abelian unrami�ed (resp. tamely rami�ed)extension of K. Therefore,Gal(Kab
 =K�Kab;tr) = Gal(kabKab;tr=k�Kab;tr)

≃ Gal(kab=k�kab;tr)
≃ torsion subgroup in U1;kby usual lo
al 
lass �eld theory.Let TK be the topologi
al 
losure of the p-torsion subgroup in Ktop2 K.Sin
e there is no p-torsion elements in K�Kab;tr=K, we have �K(TK) ⊂Gal(Kab=K�Kab;tr). From the expli
it des
ription of generators of Ktop2 K=TK(see [Z97, I08℄), it is 
lear that even �K(TK) = Gal(Kab=K�Kab;tr). Thismeans that CK should be a subgroup of index pm in TK , where pm is the or-der of p-torsion subgroup in k∗ (or in K∗). However, what are the generatorsof CK?The above des
ribed rami�
ation �ltration gives a way of generalizing the\anabelian yoga" (see Subse
tion 3.9) to higher lo
al �elds. Abrashkin [Abr02℄generalized the above 
onstru
tion from 2-dimensional 
ase to n-dimensionallo
al �elds, introdu
ing rami�
ation theory that depends on the 
hoi
e of i-dimensional sub�elds Ki (1 6 i 6 n − 1) in the given n-dimensional lo
al



40 L. XIAO, I. ZHUKOV�eld, and proved a 
omplete analog of his 1-dimensional result (announ
ed in[Abr02℄, full proof in the equal 
hara
teristi
 2-dimensional 
ase in [Abr03℄).Next, Abrashkin used his generalized rami�
ation theory to develop an anal-ogous fun
tor of �eld of norms for higher dimensional lo
al �elds, see [Abr07℄.Note that there exists further generalization of the �eld of norms fun
tor tothe 
ase of arbitrary imperfe
t residue �eld with �nite p-basis by S
holl [S
h℄;his 
onstru
tion does not use any kind of higher rami�
ation theory.Despite these ni
e properties, the I-rami�
ation theory is quite far frombeing a \Traumverzweigungstheorie". In parti
ular, even for an extension ofprime degree its I-rami�
ation break does not determine its depth of rami�
a-tion and even its genome (\W" or \F"). For example, let K = F ((t))((�)) andk = F ((�)), F being a �nite �eld. Assume that L=K 
orresponds to the Artin-S
hreier equation xp−x = �−n+t�−pm, wherem;n are positive integers. Thenthe I-break of L=K is m for any n, whereas dK(L=K) = p−1p max{n; pm}, andL=K is wild if and only if n > pm.However, in the equal 
hara
teristi
 
ase one 
an vary the 
onstant sub�eldk of K thus 
olle
ting more information on rami�
ation. For example, if L=Kis wild of degree p with the Swan number s0, then, for some 
hoi
es of k, the
I-break of L=K is (
; s) and ne
essarily s = s0. In this example m is not aninvariant of L=K. However, if in the example of §4 we 
onsider only su
h kthat the I-break of K2=K is some (
; s) (
learly, s = N), then the I-breakof K1=K will be (i;m=p). Therefore, the knowledge of I-breaks of K1=K andK2=K for all 
hoi
es of k determines the rami�
ation of K1K2=K.7.4.2. Question. Can we 
onstru
t a powerful rami�
ation theory for equal
hara
teristi
 2-dimensional �elds by varying the 
onstant sub�eld?7.4.3. Question. Can we use this approa
h even in the mixed 
hara
teristi

ase using trun
ations from [De84℄?

§8. Semi-global modelingNow we des
ribe one more approa
h to des
ription of rami�
ation in theimperfe
t residue �eld 
ase. This approa
h goes ba
k to Deligne who sket
heda proof of a Grothendie
k{Ogg{Shafarevi
h formula for surfa
es in his famousletter to Illusie [De76℄.8.1. Ba
kground. We re
all some starting points of Deligne's program. Let
F be a lo
ally 
onstant �etale Fl-sheaf of �nite rank on U , where U is the
omplement to some divisor D on a smooth proje
tive surfa
e S over an alge-brai
ally 
losed �eld of prime 
hara
teristi
 p 6= l. In order to understand therami�
ation data asso
iated with F at the generi
 point of a 
omponent D0
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onsiders various regular ar
s C transversal to D0 and studiesthe restri
tions of F to these ar
s. It is expe
ted that the Swan 
ondu
torof F|C (at the point where C meets D0) depends only on the jet of C of 
er-tain order r. Thus, we 
an 
onsider the Swan 
ondu
tor as a fun
tion on thespa
e T1;r of r-jets of regular ar
s transversal to D0; this spa
e has a natu-ral stru
ture of a ve
tor bundle over D0. Next, this fun
tion is expe
ted tobe lower semi-
ontinuous; in parti
ular, it should take its maximal value over
ertain Zariski open subset W of T1;r. The next 
laim is that the 
omplementof W has pure 
odimension one in T1;r, i.e., is a union of several irredu
iblehypersurfa
es. The further work is based on geometry of these hypersurfa
esin
luding interse
tion theory.Some of these fa
ts were proved in [La℄ under assumption of \absen
e offero
ious rami�
ation". This means that the lo
ally 
onstant sheaf F is trivi-alized in some �nite extension of k(S) su
h that all extensions of residue �eldsare separable. In parti
ular, the semi-
ontinuity of Swan 
ondu
tor has beenproved under this assumption.Brylinski in [Br℄ 
onsiders a 
y
li
 p-extension of the fun
tion �eld of a sur-fa
e S over a �eld of 
hara
teristi
 p given by theWitt ve
tor x = (x0; : : : ; xr−1).He assumes that the bran
h lo
us D0 is smooth at a 
ertain regular point Pof S and the valuations of all xi at the generi
 point of D0 are either posi-tive or prime to p. (This 
ondition implies absen
e of fero
ious rami�
ation ifr = 1 but not in general.) Under this assumption he proves that, for all 
urvesC transversal to D0 at P , the Swan 
ondu
tors of 
orresponding extensionsof k(C) are equal, and their 
ommon value is Kato{Swan 
ondu
tor of theextension of the 2-dimensional lo
al �eld k(S)D0;P 
orresponding to x.Consider a 
y
li
 extension L of degree p of k(S) as above su
h that thebran
h lo
us D0 is smooth with one 
omponent, and the rami�
ation at this
omponent is wild. We see from the papers of Laumon and Brylinski that inthis 
ase for all 
urves C transversal to D at a �xed point, the 
orrespondingrami�
ation numbers will be the same (and equal to the rami�
ation numberof L=k(S)). However, in order to approa
h a more 
omprehensive des
riptionof rami�
ation in the sense of Subse
tion 7.1, it appeared useful to 
onsider
urves whi
h are tangent to D0 of 
ertain �xed order (and smooth).8.1.1. Example. Let k be algebrai
ally 
losed, 
har k = 2, S = A2k with
oordinates t; u, S′ the normalization of S in the Artin{S
hreier extensionL�=k(t; u) given by x2 − x = t−2n+1(1 + �u);where � ∈ k. Introdu
ing t1 = tnx, we see that t1 is integral over k[t; u℄ andS′0 = Spe
k[t; u; t1℄ is regular, when
e S′ = S′0. Let O′ be the 
losed point ofS′ above the origin O. (It is unique sin
e O belongs to the bran
h lo
us of



42 L. XIAO, I. ZHUKOVnormalization morphism.) Repla
ing S and S′ with the spe
tra of 
ompletedlo
al rings at O and O′ respe
tively, and introdu
ing t0 = t(1+�u), we arriveat the homomorphism ' : k[[t0; u℄℄ → k[[t1; u℄℄ given by'(t0) = t21 + t2n+11 + terms of higher order:Noti
e that the bran
h lo
us of ' is determined by the prime ideal (t0) ofk[[t0; u℄℄. Consider a family of 
urves C� on Spe
k[[t0; u℄℄ with the equationst0 = u2 + �u3 + u5; � ∈ k;and denote by C ′� their pullba
ks in Spe
k[[t1; u℄℄. It is not diÆ
ult to 
al
ulatethat s(k(C ′�)=k(C�)) = {4n− 3; � 6= 0;4n− 5; � = 0;(assuming n > 2). Moreover, let C be an arbitrary regular 
urve on Spe
 k[[t0; u℄℄whi
h is simply tangent to the bran
h divisor, i.e., with an equationt0 = �2u2 + �3u3 + : : : ;where �2 6= 0, and let C ′ be its pullba
k. Then C ′ is irredu
ible; we haves(k(C ′)=k(C)) = 4n − 3 if �3 6= 0, and s(k(C ′)=k(C)) < 4n − 3 if �3 = 0(\ex
eptional hypersurfa
e"). Note that if C is determined by an equationt = �2u2 + �3u3 + : : :in the original 
oordinates t; u, then �3 = �3 + ��2. This means that theequation of the \ex
eptional hypersurfa
e" H� is �3 = ��2, and thus H�\dete
ts the �".8.2. Semi-global models. Deligne's program is intended to 
ompute Euler{Poin
ar�e 
hara
teristi
 of an �etale sheaf on a surfa
e or, more generally, todes
ribe rami�
ation of a �nite morphism of algebrai
 or arithmeti
 surfa
es.However, we 
an try to use this approa
h as a sour
e of ri
h informationabout rami�
ation of extensions of 2-dimensional lo
al �elds by 
onstru
tinggeometri
 \models" for given extensions.Namely, let h : A→ B be a �nite k-homomorphism of 2-dimensional regularlo
al rings with perfe
t 
oeÆ
ient sub�eld k of 
hara
teristi
 p > 0. Let p be aprime ideal of height 1 in B su
h that B=p and A=h−1(p) are regular. We shallsay that (h, p) is a model for a �nite extension of 2-dimensional lo
al �eldsL=K, if there exists an isomorphism i of 2-dimensional lo
al �elds Q̂(B)
p
≃ Lmapping Q̂(A)h−1(p) onto K.We suggest to study rami�
ation in L=K by 
onsidering various regular
urves on Spe
A and their pullba
ks in Spe
B. For ea
h su
h 
urve C and
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omponent of its pullba
k C ′, the �eld extension k(C ′)=k(C) is a �niteextension of 1-dimensional lo
al �elds inheriting information on L=K.Of 
ourse, sin
e we are interested only in \rami�
ation in 
odimension 1",we have a huge freedom in 
hoosing models for given L=K. (We 
an makeblow-ups preserving L=K et
.) We hope to des
ribe a 
lass of morphisms hhaving as simple stru
ture as possible to make the study of k(C ′)=k(C) easybut still providing models for all L=K of interest.For example, in [Z10℄ we proposed to study pairs (h, p) su
h that for some
hoi
e of regular lo
al parameters t; u in A and x; y in B with p = (x) andh−1(p) = (t) the following 
onditions are satis�ed:(i) h(t) = Æ · xex ,(ii) h(u) ≡ " · yey mod x,(iii) J(t; u) = ∣∣∣∣∣

�h(t)�x �h(t)�y�h(u)�x �h(u)�y ∣∣∣∣∣ = 
 · xM , where ex, ey are positive integers, eybeing a nonnegative power of p, M is a nonnegative integer; Æ; "; 
 ∈ B∗.Su
h morphisms appeared in [CuP℄ in the 
ontext of resolution of a �-nite morphism between regular algebrai
 surfa
es over a �eld of 
hara
teristi
p > 0.It was proved in [Z10, Prop. 2.4℄ that an extension of 2-dimensional lo
al�elds L=K has a model with properties (i), (ii), if the following 2 
onditionsare satis�ed.(1) fs(L=K) = 1.(2) Let (eij)i;j=1;2 be the matrix rami�
ation index for some 
hoi
e of rank2 valuations vL and vK , i.e., vL|K = vK · (eij). Then g
d(e11; e22)|e12.Moreover, in this 
ase we have ew(L=K) = ex and fi(L=K) = ey, see [Z10,Prop. 2.2℄.8.3. Initial questions. Let (h, p) be as in Subse
tion 8.2; denote by D0 theprime divisor of X = Spe
A 
orresponding to h−1(p). Fix a positive integerr and 
onsider the set Tr of all regular ar
s C on X su
h that (C:D0) = r.Assume the above 
ondition (iii); then C is not a 
omponent of the bran
hdivisor, and h∗C = C ′1+ · · ·+C ′n, where C ′1; : : : ; C ′n are distin
t prime divisorsof Spe
B, and n = n(C) is a positive integer. For ea
h i (1 6 i 6 n), we havean extension of 
omplete dis
rete valuation �elds with perfe
t residue �eldsk(C ′i)=k(C). Our plan is to study the rami�
ation invariants of the extensionsk(C ′i)=k(C) as fun
tions on the set Tr.First of all, we have to 
he
k that n(C) and all the rami�
ation invariantsdepend only on the jet of C of 
ertain order R = R(r). Having this proved,we 
an 
onsider n(C) and rami�
ation invariants as fun
tions on the set Tr;Rof R-jets of ar
s from Tr.
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h Tr;R has a stru
ture of an aÆne variety over k. Indeed, let t; u belo
al parameters of A su
h that (t) = h−1(p). Then, in view of Weierstra�preparation theorem, ea
h 
urve from Tr has a unique equation of the formf = {
−u+ �1t+ �2t2 + : : : ; r = 1;
−t+ �rur + �r+1ur+1 + : : : ; r > 1;where �i and �i are any elements of k with an only restri
tion �r 6= 0. If r > 1,Tr;R 
an be identi�ed with {(�r; : : : ; �R) ∈ AR−r+1k |�r 6= 0}; if r = 1, Tr;R 
anbe identi�ed with ARk ; see more details in [Z02a℄.Next, we would like to 
he
k that 
ertain fun
tions of these rami�
ationinvariants are semi-
ontinuous on Tr;R with respe
t to 
orresponding Zariskitopology. (These fun
tions are redu
ed to 
ondu
tors or the order of di�erent ifs = 1, and the pre
ise de�nitions in the general 
ase are still to be understood.)Some results in this dire
tion are in
luded into the next se
tion.

§9. Some results on semi-
ontinuity9.1. Artin{S
hreier extensions. The paper [Z02a℄ is devoted to the studyof questions raised in Subse
tion 8.3 in the 
ase of Artin{S
hreier 
overingsof the spe
trum of a 
omplete 2-dimensional regular lo
al ring (of 
hara
ter-isti
 p > 0). Su
h 
overings 
an serve as semi-global models of Artin{S
hreierextensions of 2-dimensional lo
al �elds. However, the setting in this work issomewhat more general: the morphisms with 2 (transversal) 
omponents inthe bran
h lo
us are also in
luded into 
onsideration.More pre
isely, let A be a regular two-dimensional lo
al ring (not ne
essarily
omplete), 
harA = p > 0, K = Q(A), m the maximal ideal of A, and k theresidue �eld whi
h is assumed to be algebrai
ally 
losed. For a prime ideal pof height 1, denote by Fp the 
orresponding prime divisor of Spe
A. For anytwo distin
t prime divisors Fp, Fp′ we de�ne their interse
tion number as(Fp:Fp′) = dimk A=(p+ p
′);by linearity this de�nition 
an be extended to any two divisors C;D with no
ommon 
omponents.Let L=K be a 
y
li
 extension of degree p, and let B be the integral 
losureof A in L. For the sake of simpli
ity of statements we assume here that thebran
h divisor of B=A 
onsists of one smooth 
omponent Fp1 ; for the 
ase oftwo transversal 
omponents, see [Z02a℄. Denote by UA the set of prime idealsof height 1 of A other than p1. For p ∈ UA, denote by q any prime ideal of B



RAMIFICATION OF HIGHER LOCAL FIELDS 45over p. Denotesp(L=K) = {s(L(q)=K(p)); e(L(q)=K(p)) = p;0; otherwise;where K(p) is the fra
tion �eld of A=p, and L(q) is the fra
tion �eld of B=q.Introdu
e Tr and Tr;n as in Subse
tion 8.3 and identify p with the ar
 Fp.9.1.1. Proposition. (Existen
e of a uniform suÆ
ient jet order, [Z02a, The-orem 2.1℄.) For any r > 1 there exists R su
h that if p; p′ ∈ Tr and (Fp:Fp′) >R + 1, then sp(L=K) = sp′(L=K). Let su1;r(L=K) be the minimal su
h R.Then there exists N > 1 su
h that su1;r(L=K) < Nr for any r.9.1.2. Remark. There was a mistake in the proof of \suÆ
ient jet order 
on-je
ture" in [Z02b℄. The 
orre
t part of this preprint on the bounded growth of
urve singularity invariants along 
ertain tame and wild morphisms of surfa
eswas published later as [Z06℄.Next, introdu
e Zariski topology in all Tr;n as in Subse
tion 8.3. Then thefollowing statements hold.9.1.3. Proposition. (Semi-
ontinuity of a break, [Z02a, Theorems 2.2{2.4℄.)1. Let n > su1;r(L=K). Denote by Jn(p) the n-jet of the ar
 Fp. Then forany s > 0 the set
{Jn(p)|p ∈ Tr; sp(L=K) 6 s}is a 
losed subset in Tr;n.2. The supremum sr(L=K) = sup{sp(L=K)|p ∈ Tr}is �nite.3. Assume in addition that A is a G-ring. Then the sequen
e (sr(L=K)=r)ris 
onvergent.9.2. Extensions of prime degree. The paper [Fa℄ is devoted to morphismsh : A→ B of Subse
tion 8.3 with properties (i), (ii) and (iii) without assump-tion that B is a Galois algebra over A.Let Tr, Tr;R, C, n(C), C ′i have the same meaning as in Subse
tion 8.3.Under the assumption n(C) = 1, denote by sC the only rami�
ation break ofk(C ′1)=k(C) as de�ned at the very end of §1. Then we have [Fa, Theorem 4℄:9.2.1. Proposition. (Existen
e of a uniform suÆ
ient jet order.) For anyr > 1 there exists R su
h that if C; ~C ∈ Tr and (C: ~C) > R + 1, then sC =s ~C. Let su1;r(h) be the minimal su
h R. Then there exists N > 1 su
h thatsu1;r(h) < Nr for any r.



46 L. XIAO, I. ZHUKOVNext, Faizov proved the following semi-
ontinuity statement [Fa, Theo-rems 5 and 6℄.9.2.2. Proposition. (Semi-
ontinuity of a break.) 1. Let n > su1;r(h). Thenfor any rational s > 0 the set
{Jn(C)|C ∈ Tr; sC 6 s}is a 
losed subset in Tr;n.2. The supremum sr(h) = sup{sC |C ∈ Tr}is �nite.The proofs are based on 
areful work with Hamburger{Noether algorithmfor 
urve C1 yielding an expli
it form of a uinformizing element of k(C).9.3. Relation to singularity invariants. In the 
ontext of Subse
tion 8.3,we 
onsidered regular ar
s on Spe
A; however, the ar
s C ′i on Spe
B are ingeneral singular, and the 
omplexity of singularity 
an re
e
t the rami�
ationdata of the morphism h; this phenomenon was �rst observed in [Z06℄. In [CZ℄we relate the semi-
ontinuity property of rami�
ation invariants with the semi-
ontinuity of Æ-invariant in families of singular ar
s.Let A;B be 
omplete 2-dimensional regular lo
al rings with algebrai
ally
losed 
oeÆ
ient sub�eld k. A �nite k-homomorphism h : A→ B will be 
alledunmixed if h(mA) ⊂ mB and h(mA) 6⊂ m2B . In parti
ular, a homomorphismwith properties (i) and (ii) is unmixed if in its de�nition either ex = 1 orey = 1.A de
omposable homomorphism is by de�nition a 
omposition of severalunmixed homomorphisms.The following statement is proved in [CZ℄.9.3.1. Proposition. Let h : A → B be a de
omposable homomorphism ofdegree m, and B its bran
h divisor in Spe
A. Let C be a redu
ed 
urve onSpe
A having no 
ommon 
omponents with B; C ′ = h∗C. Let C ′1; : : : ; C ′r beall 
omponents of C ′; Ci = h∗C ′i, i = 1; : : : ; r; di the order of di�erent in theextension of dis
rete valuation �elds k(C ′i)=k(Ci). Then we have2Æ(C ′)− 2mÆ(C) = (C:B)− r∑i=1 di: (16)This immediately implies9.3.2. Corollary. Let h : A → B be a de
omposable homomorphism, and Bits bran
h divisor in Spe
A. Let C be a regular 
urve on Spe
A whi
h is nota 
omponent of B; C ′1; : : : ; C ′r all 
omponents of C ′ = h∗C, i = 1; : : : ; l; di
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rete valuation �elds k(C ′i)=k(C).Then1) ∑ri=1 di 6 (C:B);2) Æ(C ′) 6 12(C:B).Consider a de
omposable homomorphism h : A → B and assume that thebran
h divisor of h is of the form B = bD0, where D0 is a regular redu
edirredu
ible 
urve on Spe
A and b is a positive integer. (It is always so whenh has properties (i){(iii) from Subse
tion 8.2.)9.3.3. Lemma. Let � be a positive integer. Let A be a 
omplete 2-dimensionalregular lo
al ring having a 
oeÆ
ient sub�eld. Consider two 
urves C; ~C onSpe
A su
h that Æ(C) 6 �, and C; ~C have the same 2�-jet. Let C1; : : : ; Crbe all irredu
ible 
omponents of C. Then ~C also has r irredu
ible 
omponents~C1; : : : ; ~Cr with Æ( ~Ci) = Æ(Ci) and ( ~Ci: ~Cj) = (Ci:Cj) for all i; j.9.3.4. Question. Is it possible to estimate Milnor and Tjurina numbers�(C) or �(C) in terms of Æ(C)? Maybe, one 
ould apply formulas for �(C)from [BGM, MHW℄. If yes, this would enable us to estimate �nite determi-na
y of C.Next, let Tr;R, n(C), C ′i have the same meaning as in Subse
tion 8.3.9.3.5. Proposition. Let C be a regular 
urve on Spe
A with (C:D0) = r <
∞. Then, for the 
urve h∗C, the number of 
omponents, their Æ-invariantsand interse
tion numbers depend only on the jet of C in Tr;br.Proof. Let C and ~C have the same br-jet. Then obviously h∗C and h∗ ~C alsohave the same br-jet. In view of Corollary 9.3.2, Æ(h∗C) 6 br=2. It remains toapply Lemma 9.3.3 with � = [br=2℄. �9.3.6. Corollary. For C as in the above proposition, let di be the order of dif-ferent in the extension of dis
rete valuation �elds k(C ′i)=k(C), i = 1; : : : ; n(C).Then ∑ri=1 di depends only on the br-jet of C.Proof. It follows from Proposition 9.3.5 and formula (16). �Let us make the following Assumption SÆ on the semi-
ontinuity of theÆ-invariant.Let A be a 
omplete 2-dimensional regular lo
al ring with algebrai
ally 
losed
oeÆ
ient sub�eld k, and let U be an open subset of ANk for some positive inte-ger N . Let f∈A[X1; : : : ;XN ℄ be su
h that for any 
losed point (a1; : : : ; aN )∈Uthe 
urve C(a1; : : : ; aN ) = Spe
A=(f;X1 − a1; : : : ;XN − aN ) is redu
ed. As-sume that there exists a positive integer � su
h that Æ(C(a1; : : : ; aN )) 6 �for all (a1; : : : ; aN ) ∈ U . Then Æ(C(a1; : : : ; aN )) is an upper semi-
ontinuousfun
tion on U .



48 L. XIAO, I. ZHUKOV9.3.7. Proposition. If Assumption SÆ is satis�ed, then for any r > 1, Æ(h∗C)determines an upper semi-
ontinuous fun
tion on Tr;br.Proof. It follows immediately from Corollary 9.3.2. �9.3.8. Question. Is it true that n(C) (the number of 
omponents of h∗C)determines a lower semi-
ontinuous fun
tion on Tr;br? What 
an be said aboutthe generi
 value of n(C)?9.3.9. Corollary. For a regular 
urve C on Spe
A with (C:D0) = r, letC ′1; : : : ; C ′n be all 
omponents of h∗C, n = n(C), and di the order of di�erent inthe extension of dis
rete valuation �elds k(C ′i)=k(C). Then ∑ni=1 di determinesa lower semi-
ontinuous fun
tion on Tr;br, if the Assumption SÆ is satis�ed.Proof. It follows immediately from Prop.9.3.7 and 9.3.1, sin
e (C:B) = br. �9.3.10. Question. We suggest to say that a lower semi-
ontinuous integer-valued fun
tion h on a variety S is purely lower semi-
ontinuous if for everyN ea
h 
omponent of the 
losed subsetSN = {P ∈ S|h(P ) < N}has 
odimension 6 1 in the respe
tive 
omponent of SN+1.Is it true that ∑ni=1 di determines a purely lower semi-
ontinuous fun
tionon Tr;br? Equivalently, is Æ(�r ; : : : ; �pr) purely upper semi-
ontinuous on Tr;br?(Pure upper semi-
ontinuity is de�ned similarly.)This is related to Deligne's 
onje
ture that the lo
i of ex
eptional values oframi�
ation invariants are always hypersurfa
es.
§10. Algebrai
-geometri
 
onsequen
es of Abbes{Saito �ltrationThe theory of Abbes{Saito rami�
ation �ltrations has deep appli
ations inalgebrai
 geometry, in
luding Grothendie
k{Ogg{Shafarevi
h type formulasfor Euler 
hara
teristi
 of �etale sheaves. A survey of these geometri
 appli
a-tions is also given in T. Saito's ICM talk [Sa10℄. Here we prefer to dis
uss atthe same time the global version of three analogous obje
ts: lisse Ql-sheaves,over
onvergent F -iso
rystals, and lo
ally free 
oherent sheaves with integrable
onne
tions; this way, we 
an 
ompare their similarities as well as di�eren
es.10.0.1. Question. This se
tion 
an lead the reader to the following question:
ould some of the results in this se
tion �nd an appli
ation to the geometri
Langlands program? The authors are very interested in su
h potential rela-tions.



RAMIFICATION OF HIGHER LOCAL FIELDS 4910.1. Setup. Let k be a �eld. For a smooth variety X over k, let D = ∪ri=1Dibe a divisor on X with stri
t simple normal 
rossings, where Di are irredu
ible
omponents. Let U = X\D denote the 
omplement. Suppose that we are inone of the following situations.(a) F is a lisse Ql-sheaf on U , where l is a prime number di�erent from
har k;(b) F is an F -iso
rystal on U over
onvergent along D, while 
har k =p > 0;(
) F is a lo
ally free 
oherent sheaf on U with an integrable 
onne
tion,while 
har k = 0.At the generi
 point �i of an irredu
ible 
omponent Di of the divisor D, one
an talk about(a) the Swan 
ondu
tor Sw(F ;Di), obtained by 
onsidering the represen-tation Gk(X)�i → �1(U) → GL(VF ), where the latter homomorphismis the representation asso
iated to the lisse sheaf F ; or(b) the (di�erential) Swan 
ondu
tor Sw(F ;Di), obtained by passing tothe generi
 point in the sense of Subse
tion 6.5; or(
) the irregularity Irr(F ;Di) in the sense of Subse
tion 6.9 by base 
hang-ing to the 
ompletion at �i; we rename it as the Swan 
ondu
torSw(F ;Di).We de�ne the Euler 
hara
teristi
 to be �(U;F) = ∑j(−1)j dimHj?(X;F),where ? is the �etale 
ohomology (after base 
hange to kalg) in 
ase (a), is therigid 
ohomology in 
ase (b), and is the de Rham 
ohomology in 
ase (
).When F is the trivial obje
t, we write �(U) for �(U;F).We list these three 
ases together be
ause most of the results on rami�
ationtheory hold in a similar fashion.10.2. Results of variation of Swan 
ondu
tors. The approa
h we willtake is lo
al-to-global; building on the study of variation of Swan 
ondu
torslo
ally on X, we expe
t a global result from the lo
al data at the end.We explain the main results of [KeX, Ke11a, Ke10b℄ on the variation prop-erties of Swan 
ondu
tors by means of an example. Histori
ally, the same resultin the rank one 
ase was already known to Kato, as explained impli
itly inhis foundational work [Ka94℄. We take X = A2 = Spe
k[x; y℄, D0 = Z(y)and D1 = Z(x). Let F be as in either 
ase 
onsidered in Subse
tion 10.1 overU = X\(D0 ∪D1) as above. We 
an 
onsider the Swan 
ondu
tors Sw(F ;D0)and Sw(F ;D1).We may blowup X at the origin P = D0 ∩D1 to get X ′ = BlPX; let D1=2denote the ex
eptional divisor. Sin
e F is de�ned on U , we 
an talk about
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ondu
tor Sw(F ;D1=2) of the sheaf F along D1=2 as in Subse
-tion 10.1(b). Carrying on this idea, we 
an 
ontinue to blow up X ′ along theinterse
tions of D1=2 with the proper transforms of D0 and D1. We use D1=3and D2=3 to denote the two ex
eptional divisors for this blowup. Similarly,the Swan 
ondu
tors Sw(F ;D1=3) and Sw(F ;D2=3) are then well-de�ned. We
an iterate this pro
ess to blow up interse
tions of these divisors and then
onsider the Swan 
ondu
tors along all the ex
eptional divisors. We label theex
eptional divisors as follows: for ea
h pair of 
oprime integers (m;n) ∈ N2,there is exa
tly one ex
eptional divisor Dn=m+n su
h that, for the valuation v
orresponding to Dn=m+n, we have v(x) = n and v(y) = m. Along this divisor,a Swan 
ondu
tor Sw(F ;Dn=m+n) 
an be de�ned as in Subse
tion 10.1(b).10.2.1. Proposition. The fun
tionnn+m 7−→
1n+mSw(F ;Dn=m+n)extends by 
ontinuity to a 
onvex pie
ewise linear fun
tion on [0; 1℄ with inte-gral slopes.This proposition is a spe
ial 
ase of the results proved in [KeX, Ke11a,Ke10b℄ for a higher dimensional variety X and for an interse
tion point ofsimple normal 
rossing divisors. (The essential part of the proof is in [KeX℄;the statements appear in [Ke11a℄ for 
ases (a) and (b) and in [Ke10b℄ for
ase (
).) Moreover, the slopes of the pie
ewise linear fun
tion are related to there�ned Swan 
ondu
tor homomorphism de�ned in Subse
tion 6.2; see [X12b℄for details.10.2.2. Remark. We point out a 
aveat: there is no analogous result ofProposition 10.2.1 for Artin 
ondu
tors, be
ause blowing up is log-smooth butnot smooth. So Swan 
ondu
tors are better adapted to this type of variationquestions.10.3. Approa
h to rami�
ation theory using 
utting-by-
urves. Itwould be interesting to 
larify the relation between the Abbes{Saito �ltrationat generi
 points (as dis
ussed above) and the rami�
ation data from 
utting-by-
urves (as dis
ussed in details in §9).We �rst explain the \
ut-by-
urve" Swan 
ondu
tors. Let Di be an irre-du
ible divisor of X, then one 
an de�ne a new Swan 
ondu
tor by takingSw
urve(F ;Di) := supC (Sw(F|C ;C ∩Di)(C:Di) );where (C:Di) is the interse
tion number of C with Di and the supremum istaken over all 
urves C that interse
ts with Di (not ne
essarily transversely).



RAMIFICATION OF HIGHER LOCAL FIELDS 51A suggestion to study Sw
urve appeared (in 2-dimensional 
ase) in [Z02b, Re-mark 2.5.3℄; a 
omputation in the Artin{S
hreier 
ase was done in [Z02a℄ (seeabove Prop. 9.1.3).The natural question to ask is whether Sw
urve(F ;Di) is the same asSw(F ;Di) whi
h is de�ned using the Abbes{Saito rami�
ation �ltration (asin Subse
tion 10.1). This question is addressed by Barrientos [Ba℄ in 
ase (a)when the sheaf has rank one, whi
h generalizes an idea of Deligne{Esnault{Kerz [EK℄. It would be interesting to generalize this to all 
ases in Subse
-tion 10.1 for arbitrary rank obje
ts. We also emphasize that using 
urves thatare not transversal to the divisor is essential in this theory, as shown in thefollowing example.10.3.1. Example. Let X = A2 be the xy-plane over a �eld k of 
hara
teristi
p and let D be the divisor Z(y). Consider the Artin{S
hreier sheaf F overU = X − D given by the equation zp − z = x=yp, that is the lisse sheafasso
iated to a nontrivial 
hara
ter of the Galois group Z=pZ of the 
over ofU given by this equation.Using Example 6.1.1, we see that Sw(F ;D) = p, as x is not a pth power inthe residue �eld k(x). When restri
ted to ea
h line Ca : x = a for a ∈ kalg,the Artin{S
hreier equation be
omes zp − z = a=yp whi
h is the same asz′p− z′ = a1=p=y for z′ = z−a1=p=y. So Sw(F|Ca ;D∩Ca) = 1. In other words,the generi
 Swan 
ondu
tor (using Abbes{Saito's �ltration) is not equal to theSwan 
ondu
tor restri
ted to any su
h 
urve Ca.If instead we 
onsider the 
urve Ca;m : y = (x − a)m for a ∈ kalg andm≫ 0, the Artin{S
hreier equation be
omes zp − z = x=(x− a)pm. Sin
e theinterse
tion point is x = a, we use 
hange of variable x′ = x− a; the equationbe
omes zp − z = (x′ + a)x′−pm. If we substitute z′ for z − a1=px′−m, we getz′p− z′ = x′−pm+1+ a1=px′−m. It follows that Sw(F|Ca;m ;D∩Ca;m) = pm− 1.Thus, lim supm Sw(F|Ca;m ;D ∩ Ca;m)(D:Ca;m) = p:We also point out that when m = 1, the 
urve y = x − a is still trans-versal to D, but Sw(F|Ca;1 ;D ∩ Ca;1) = p − 1, whi
h is di�erent fromSw(F|Ca ;D ∩ Ca) = 1; thus restri
ting to di�erent transversal 
urves maygive di�erent Swan 
ondu
tors. The largest Swan 
ondu
tor obtained by re-stri
ting to transversal 
urves is p− 1, whi
h is still smaller than the \
orre
tanswer" p, as seen at the \generi
 point". This is why we need to 
onsider
urves non-transversal to the divisor.



52 L. XIAO, I. ZHUKOV10.3.2. Question. Using the results on variation properties of Abbes{SaitoSwan 
ondu
tors (Prop. 10.2.1) and the information of re�ned Swan 
ondu
-tors, 
an we say something along the line of semi-
ontinuity type statementproposed by Deligne [De76℄ (and proved in [La℄ in 
ase of absen
e of fero
iousrami�
ation)?10.4. Towards generalized Grothendie
k{Ogg{Shafarevi
h formulas.One of the goals of Abbes and T. Saito's proje
t is to generalize the Euler 
har-a
teristi
 formula for l-adi
 sheaves. In fa
t, this should be appli
able to allthree 
ases we dis
ussed above. We will refer to su
h formulas as Grothendie
k{Ogg{Shafarevi
h type formulas (GOS type formulas for short). Under a 
lean-liness 
ondition whi
h we explain later, a GOS type formula is expe
ted totake the following form (when rankF = 1 and dimX = 2)�(F) = �(U)− r∑j=1 Swj · �(D◦j ) + r∑j1;j2=1 Swj1Swj2 · (Dj1 :Dj2); (17)where Swj is the Swan 
ondu
tor of F along Dj as in Subse
tion 10.1 andD◦j = Dj − (∪j′ 6=jDj′). (Compare this with the 
lassi
al Grothendie
k{Ogg{Shafarevi
h formula in Subse
tion 3.11.) The expression of the formula be-
omes more 
ompli
ated when rankF > 1.GOS type formulas are known when X is a 
urve. Case (a) is dis
ussed inSubse
tion 3.11. Case (b) is due to Christol, Crew, Matsuda, Mebkhout, andTsuzuki; a 
omplete referen
e with a proof is given in [Ke06, Theorem 4.3.1℄.Case (
) is due to Deligne and Gabber; one 
an �nd a proof in [Katz, Theo-rem 2.9.9℄.In [Ka94℄, Kato studied the GOS type formulas for higher dimensional va-rieties and for F of rank one. There have been some re
ent generalizations ofKato's work to the 
ase when both X and F are general. A GOS type formulafor 
ase (a) is 
onje
tured in [AS11, Sa10℄ under the 
leanliness 
ondition,and is proved under additional assumptions in [Sa09℄. In 
ase (
), a GOS typeformula under the 
leanliness 
ondition plus a very mild assumption is provedin [X12+℄, whi
h follows the idea of [Ka94, §1℄.We now explain the key points that enter the proof of these GOS typeformulas.First, it appears to be impossible to obtain an un
onditional formula thattakes the form of (17). This is be
ause the rami�
ation data at the generi
points of the divisors do not determine the rami�
ation at the 
losed points.One has to impose a 
leanliness 
ondition on the obje
t F , whi
h roughly saysthat the rami�
ation at all 
losed points onD is determined by the rami�
ationdata at generi
 points of D. The 
leanliness 
ondition is dis
ussed in [AS11℄
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ase (a), but also note the subtlety of di�erent versions of 
leanliness, asdis
ussed in [X12+℄ for 
ase (
).10.4.1. Question. We often en
ounter situations when F is not 
lean on X.But we expe
t that there exists a birational proper morphismf : (X ′;D′) → (X;D)su
h that f∗F satis�es the aforementioned 
leanliness 
ondition. In 
ase (
),this expe
tation is known as the Sabbah Conje
ture, proved by Kedlaya [Ke10b,Ke11b℄ and Mo
hizuki [Mo-T℄ independently. It would be very interesting toprove this expe
tation in 
ases (a) and (b). This may be thought of as a versionof desingulization, ex
ept that we are resolving the \singularities of a sheaf".Se
ond, let us assume the 
leanliness 
ondition from now on. Along the wayof proving GOS type formulas, we expe
t that the rami�
ation data (namelythe Swan 
ondu
tors and the re�ned Swan 
ondu
tors) also provides informa-tion about the log-
hara
teristi
 
y
le of F (as a 
y
le in the log-
otangentspa
e of X). There are a good surprise and a bad surprise when one tries torealize su
h philosophy. The good surprise is that, unlike in the usual (non-logarithmi
) 
hara
teristi
 
y
le for an algebrai
 D-module, where all irre-du
ible 
omponents are 
onormal bundles of some 
losed subvarieties of X(see, e.g., [HTT℄), the log-
hara
teristi
 
y
le 
an 
ontain arbitrary subbun-dles of the log-
otangent spa
e over some subvarieties of X.6 The expe
tationis that the 
oeÆ
ients from the re�ned Swan 
ondu
tors de�ne the aforemen-tioned subbundles whi
h 
onstitute the log-
hara
teristi
 
y
le. We also pointout that the Euler 
hara
teristi
 is only sensitive to the multipli
ities of thesesubbundles but not to how they are embedded in the log-tangent spa
e of X.The bad surprise is that the de�nition of log-
hara
teristi
 
y
les is a bigmystery! On one hand, it seems that there has not been a su

essful theoryof (log-)
hara
teristi
 
y
les for l-adi
 sheaves; on the other hand, even in the
ases (b) and (
), where a standard theory of 
hara
teristi
 
y
les is available(see [HTT℄ for 
ase (
) and [Be℄ for 
ase (b)), it is not entirely 
lear how tomake an analogous logarithmi
 theory. Two major diÆ
ulties are the la
k ofappropriate log-holonomi
ity theorem for F (whi
h may not even be �nitelygenerated over DlogX ) and absen
e of Bernstein inequality. (We refer to [X12+℄for more dis
ussion on pathologi
al examples.) In 
ase (
), the �rst author[X12+℄ developed a theory tailored for the appli
ation to the GOS type for-mulas. He does not know how to make analogous 
onstru
tion in 
ase (b).6This is related to the fa
t that the Poisson stru
ture on the log-
otangent spa
e isdegenerate.



54 L. XIAO, I. ZHUKOVThird, the Euler 
hara
teristi
 and the log-
hara
teristi
 
y
les are expe
tedto be related. In the standard theory of algebrai
 D-modules and over
onver-gent F -iso
rystals, the interse
tion number of the 
hara
teristi
 
y
le with thezero se
tion of the 
otangent spa
e gives the Euler 
hara
teristi
 of F ; thisformula is known as the Kashiwara{Dubson formula. See [HTT℄ for the alge-brai
 D-module 
ase and [Be℄ for the over
onvergent F -iso
rystal 
ase. Onemay hope to use a log-version of su
h a formula to dedu
e GOS type formu-las by 
omputing expli
itly the log-
hara
teristi
 
y
les, at least in the 
aseof F -iso
rystals and algebrai
 D-modules. Unfortunately, this 
omes ba
k tothe bad surprise mentioned earlier: we do not have a satisfa
tory theory oflog-
hara
teristi
 
y
les for general F , ex
ept in 
ase (
) where a GOS typeformula is proved in [X12+℄ under a mild hypothesis.10.4.2. Remark. A very important appli
ation for an appropriate de�ni-tion of log-
hara
teristi
 
y
les for over
onvergent F -iso
rystals would be thefollowing. Kedlaya develops a tri
k in [Ke11a, Se
tion 5℄ that 
an \transfer"the rami�
ation data of a lisse l-adi
 sheaf to a (virtual) over
onvergent F -iso
rystal. Then we would get a natural de�nition of log-
hara
teristi
 
y
lesfor lisse l-adi
 sheaves for free. To our knowledge, a general 
onstru
tion ofthe (log-)
hara
teristi
 
y
les is not known for lisse l-adi
 sheaves. (Underthe 
leanliness 
ondition, Abbes and T. Saito [AS11℄ give a de�nition usingthe re�ned Swan 
ondu
tors, but it is un
lear how to remove the 
leanlinesshypothesis.)10.5. A global approa
h by Kato{Saito. In the end, we brie
y mentionan approa
h of Kato and T. Saito, in whi
h they interpret the rami�
ationinformation of a lisse Ql-sheaf F as 
y
le 
lasses supported on the boundarydivisor D. The method is global and hen
e is di�erent from the view point wetook in previous subse
tions. We will only summarize the gist of the idea butrefer to [KS08℄ for details.One �rst 
hooses a Zl-latti
e F0 of F and 
onsider �F = F0=lF0 instead.It turns out that the (wild) rami�
ation information is 
ompletely 
ontainedin the redu
tion �F . Then there exists a �nite Galois �etale 
over V of U overwhi
h �F is trivial. Put G = Gal(V=U); the sheaf �F 
orresponds to an Fl-representation � �F of G. Suppose that V admits a 
ompa
ti�
ation Y su
hthat E = Y \V is a divisor with simple normal 
rossings. Let f denote thenatural morphism f : Y \V → X\U . One 
an 
onsider the interse
tion of thediagonal Y and the graph of g ∈ G in 
ertain log-produ
t Y ×X Y , viewedas a 
y
le sV=U (g) on Y \V . One de�nes sV=U (id) so that ∑g∈G sV=U (g) = 0.



RAMIFICATION OF HIGHER LOCAL FIELDS 55Kato and T. Saito [KS08℄ then formally de�ne the Swan 
lass to beSw(F) := ∑g∈G f∗(sV=U (g))TrBr(g; � �F ) ∈ CH0(D);where TrBr is the Brauer tra
e. (Compare this to the de�nition of Swan 
har-a
ter in Subse
tion 3.7.) The upshot of [KS08℄ is that, even if V does notadmit a good 
ompa
ti�
ation as above, one 
an use alteration to reprodu
ethe 
onstru
tion (at the expense of passing to Chow group with rational 
oeÆ-
ients). Moreover, the Swan 
lass does not depend on the 
hoi
e of the latti
e
F0. Essentially by 
onstru
tion, the degree of the Swan 
lass measures thedi�eren
e �(U;F) − �(U;Ql) · rankF .10.5.1. Question. Can one prove an analogous result of Kato and T. Saitoin the 
ases (b) and (
) of Subse
tion 10.1?We also mention that Abbes and T. Saito 
onstru
t 
ertain 
ohomology
lasses for lisse l-adi
 sheaves (under a mild hypothesis) using purely 
ohomo-logi
al method; they 
he
k that their 
onstru
tion is 
onsistent with the workof Kato and T. Saito above. Re
ently, Kato and T. Saito [KS13℄ extendedtheir work to varieties over Qp; in this 
ase, the fo
us is no longer the Eu-ler 
hara
teristi
 of F , but the Swan 
ondu
tor of the 
ohomology of F as arepresentation of Gal(Qalgp =Qp).10.5.2. Question. It would be interesting to know if one 
an reprodu
e someof the results in this subse
tion by working Zariski lo
ally on X. Also, 
an werelate this to the lo
al approa
hes we dis
ussed earlier?

§11. Mis
ellaneous questionsHere are some questions whi
h are of interest for us but do not �t into otherse
tions.11.1. Rami�
ation numbers and stru
ture of Galois groups. Thereexists a number of results relating the stru
ture of Galois groups with thepossible values of rami�
ation invariants. Hasse{Arf theorem gives an example;another example is the following Hyodo inequality ([Hy, Lemma (4-1)℄ or,without 
lass �eld theory, [Z95, §1℄).11.1.1. Proposition. Let M=K be a 
y
li
 extension p2, L the intermediatesub�eld. ThendK(M=L) > min ((p− 1 + p−1)dK(L=K); eK − p−1eK + p−1dK(L=K)): (18)



56 L. XIAO, I. ZHUKOV11.1.2. Question. Given a 
omplete dis
rete valuation �eld K, a word T =T1 : : : Tn in the alphabet {W;F} and an n-tuple of integers (i1; : : : ; in), doesthere exist a 
y
li
 extension L=K with genome T and lower breaks (i1; : : : ; in)?The answer is known only in 2 
ases.(1) The 
lassi
al 
ase: we only give the referen
e [Mik81℄ for the mixed
hara
teristi
 
ase. For equal 
hara
teristi
 
ase, a related work is [Th℄.(2) Fero
ious extensions of 2-dimensional �elds [We℄.In general, we 
annot even answer the following question.11.1.3. Question. Given a 
omplete dis
rete valuation �eld K and a wordT = T1 : : : Tn in the alphabet {W;F}, does there exist a 
y
li
 extension L=Kwith genome T ?If 
harK = p, the answer is expe
ted to be positive for any T ; however,it 
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