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BINARY MIXTURE CONVECTION IN A
HORIZONTAL CHANNEL UNDER THE

SORET EFFECT ACTION

Irina Stepanova

Abstract. The mathematical model describing stationary flow of binary liq-
uid mixture is under consideration. The exact solution of the equations of
convective heat and mass transfer is constructed for the special form of the
functions of temperature and concentration. All possible statements of bound-
ary value problems are studied in order to analyse thermal diffusion separation
of binary mixture in a long horizontal channel with rigid walls. It is discov-
ered that only one of the statements (at inhomogeneous heating of both rigid
walls) leads to feasible results. With the help of the constructed solution for
the mentioned boundary value problem the effect of layer thickness, given flow
rate and action of gravity force on the separation process, is analysed.

1. Introduction

Convective motion of liquids is a common phenomenon in nature and the basic
mechanism of heat and mass transfer. It should be noted that the convection gener-
ated by heat changes only differs from convection induced by joint temperature and
concentration inhomogeneities. Firstly, concentration gradient leads to appearance
of one more component of the convective force. Secondly, a competition of dissipa-
tive effects (heat conductivity and diffusion) can affect the motion of liquid. And
finally, there are reciprocal Dufour and Soret effects (diffusive thermal conductivity
and thermodiffusion, correspondingly) in mixtures which influence heat and mass
transfer. According to [1] the Dufour effect is weak in liquid mixtures. At the same
time, due to the Soret effect, the change of temperature on some degrees gives
variations in concentration by a few percent. That is why the Soret effect is taken
into account in the mathematical model of convective and molecular mass transfer
while the action of the Dufour effect is usually neglected [1]. The above listed fea-
tures of the flows of binary mixtures give a reason to assume that the description
of such flows forms a separate class of problems in fluid mechanics. The analysis of
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the class allows to understand behavior of binary mixtures and differences between
flows of two-component mixture and a pure heat-conducting fluid.

Mathematical model of convective heat and mass transfer in a binary mixture
contains the Navier–Stokes equations in the framework of Oberbeck-Boussinesque
approximation. It means that the liquid is assumed to be incompressible and the
changes of density are taken into account in the term corresponding to buoyancy
force only. Furthermore, the density depends on temperature and concentration
with respect to linear law. Distribution of temperature and changes of concentra-
tion are described by means of equations corresponding to Fourier’s and Fick’s laws
respectively [2], temperature and concentration deviations from constant equilib-
rium values are assumed to be moderate. The Soret effect is taken into account
in the mass transfer equation. The obtained system of convective heat and mass
transfer equations is nonlinear in common case. The construction of its exact so-
lution is an interesting problem from the mathematical point of view. It is also
impossible to underestimate the role of exact solutions for describing the processes
occurring in binary mixtures. The solution in the closed form can provide analysis
for the whole complex of parameters of the problem simultaneously whereas the
numerical solution is found at given values of all parameters. At the same time,
it is clear that the exact solution can be constructed for the simplified problem
statements only, while the solution of the problems in two or three dimensional
space is possible by means of numerical methods only.

Further we consider the reduced system of the governing equations. The sim-
plifications are described as follows. We deal with unidirectional flows, only the
horizontal velocity component is nonzero and depends on the vertical coordinate y
only. The fields of pressure, temperature and concentration are the functions of x
and y coordinates. Moreover, dependence of temperature and concentration on x
is linear. Assumption on such a form of these functions arose due to papers of Os-
troumov [3] and Birikh [4]. These authors suggested to describe convective flows in
the central part of a long narrow channel by means of linear temperature function
with respect to the longitudinal coordinate. It allowed them to find the solution of
corresponding system of equations in the closed form. Similar reasoning is used in
papers [5,6] at derivation of solution describing advective flow in a horizontal layer.
If we consider the governing system in the assumption about unidirectional motion
without suggestion on the form of temperature and concentration functions, then
the following fact can be revealed. If the concentration and temperature functions
are polynomials, then they can be linear, quadratic and cubic functions with respect
to x. This is proven in papers [7,8], where compatibility of the described system is
investigated. It is shown that the equations of unidirectional stationary and non-
stationary flow are solvable if the functions of temperature and concentration are
the linear ones with respect to x.

Assuming temperature and concentration are linear functions of x and dealing
with unidirectional stationary flow, we can integrate the governing equations in the
closed form. In order to describe the possible modes of binary mixture flow, the
boundary conditions should be posed. We consider the flow arising in the central
part of long narrow channel (see Fig. 1). One of the application of discussed solution
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and described geometry is modelling of thermal diffusion separation at the design
of the set-up for the measurements of thermal diffusion coefficient [9, 10]. The
set-up can be heated form up and below or both walls can be thermally insulated.
Sometimes, it is more convenient to heat either upper wall or lower one only. Such
modes of heating correspond to four types of boundary conditions for the function
of temperature. All of them are studied in the present paper. The boundary
conditions for all desired functions are described in the next section in details.

Figure 1. The geometry of long narrow channel filled by binary
mixture. The rigid walls of channel y = 0 and y = L are heated or
thermally insulated.

It is necessary to note that in earlier paper of the author [11] the exact solution
for the heat and mass transfer equations with Dirichlet boundary conditions for
the temperature function is presented without details. Influence of inhomogeneous
heating of the both walls on the thermal diffusion separation is analysed. The
investigation of action of other factors on the flow is as important as effect of
thermal load of walls. In the present paper, we study the influence of flow rate
through a cross section of the layer, action of gravity force and change of the layer
width on the distribution of components in ethanol-water mixture. We show that
the constructed exact solution catches plausible loss of the near-wall effects at the
growth of the layer width and intensification of the motion at the increase of the flow
rate through the cross section of the layer. Investigation of the gravity force action
is useful due to the above described experiment since measurements of thermal
diffusion coefficients are being carried out both on the Earth and weightlessness
conditions. We show that the constructed solution predicts influence of gravity
change on the concentration deviations correctly.

The paper is organized as follows. At first, the governing equations of heat
and mass transfer are introduced and their exact solution is constructed if the
temperature and concentration functions are linear with respect to longitudinal
coordinate. Then, four types of boundary conditions of the temperature function
are studied for the description of motion of the mixture in a long horizontal layer.
In Section 3, the posed problem is solved for every boundary conditions type,
all characteristics of the flow are found. It is revealed that the most interesting
case occurs if the inhomogeneous heating of the rigid walls is used as boundary
condition for the temperature function. The exact solution constructed for this type
of boundary conditions is utilized for further analysis of heat and mass transfer in
the ethanol-water mixture in Section 4. Features of the thermal diffusion separation
are described. Influence of layer thickness, flow rate and gravity action on the flow
is analysed.
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2. Governing equations. Exact solution construction

We consider the geometry of the problem shown in Fig. 1. A binary mixture
occupies the horizontal layer between two rigid walls which can be heated or ther-
mally insulated. The layer width L is assumed to be much shorter then its length
in the direction of x-axis. The gravity acceleration vector g has the coordinates
(0, −g). We assume that the velocity vector u has the horizontal component u(y)
only, the functions of temperature T , concentration C and the modified pressure up
to hydrostatic term p∗ depend on both x and y. All characteristics of the motion
are stationary ones.

In view of the listed assumptions about the desired functions the Navier–Stokes
equations complemented by the heat and mass transfer equations take the form [12]

(2.1)
νuyy =

1

ρ0
p∗x, g(β1T + β2C) =

1

ρ0
p∗y,

uTx = χ(Txx + Tyy), uCx = D(Cxx + Cyy) +Dθ(Txx + Tyy),

where ρ0 is some reference value of the density of the liquid, ν is the kinematic
viscosity coefficient, χ is the thermal diffusivity coefficient, D is the coefficient of
diffusion, β1 and β2 are the coefficients of thermal and concentration expansion
respectively. The last term in the equation for concentration corresponds to tak-
ing into account the thermal diffusion (Soret) effect, parameter Dθ is the thermal
diffusion coefficient [13]. If Dθ < 0, then the thermal diffusion is called normal,
the gradients of temperature and concentration are co-directional. If Dθ > 0, then
we deal with abnormal thermal diffusion effect and gradients of temperature and
concentration have the opposite directions.

Using the following dimensionless variables

x̂ =
x

L
, ŷ =

y

L
, û =

ν

gβ1∆TL2
u,

p̂∗ =
1

ρ0gβ1∆TL
p∗, T̂ =

1

∆T
T, Ĉ =

β2
β1∆T

C,

we rewrite equations (2.1) in the following form

uyy = px, T + C = py,

GruTx =
1

Pr
(Txx + Tyy),(2.2)

GruCx =
1

Sc

[
Cxx + Cyy − ψ(Txx + Tyy)

]
,

the symbols hat and asterisk are omitted, Gr = gβ1∆TL
3/ν2 is the Grashof

number, Pr = ν/χ is the Prandtl number, Sc = ν/D is the Schmidt number,
ψ = −β2Dθ/(β1D) is the separation ratio. The values ∆T and L are taken as the
representative temperature and the scale of the width of the layer respectively.

Equations (2.2) are nonlinear in the general case. The construction of exact
solutions of such a system is interesting not only as possibility to describe physical
phenomenon but also from mathematical point of view.
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We consider the following representation for the functions of temperature and
concentration

(2.3) T (x, y) = (a1y + a2)x+B(y), C(x, y) = (n1y + n2)x+K(y),

where ai, ni, i = 1, 2, are constants, B(y), K(y) are the smooth functions to be
found further.

If we differentiate the first equation of the system (2.2) with respect to y and
the second equation from (2.2) with respect to x, compare the obtained expressions
and use ansatz (2.3), the following equation for the function of velocity u(y) can be
derived uyyy = (a1+n1)y+a2+n2. Integrating the latter three times, the function
u can be found as

(2.4) u =
(a1 + n1)y

4

24
+

(a2 + n2)y
3

6
+
u1y

2

2
+ u2y + u3

with arbitrary constants ui, i = 1, 2, 3.
The third and fourth equations from (2.2) give relationships for the functions

B(y) and K(y)

(2.5)
1

Pr
Byy = Gru(a1y + a2),

1

Sc
(Kyy − ψByy) = Gru(n1y + n2).

Substituting the function u from (2.4) into equations (2.5) and integrating both of
them twice with respect to y, we have

(2.6) B = GrPr
[U1

Ay
7

42
+
U2
Ay

6

30
+
U3
Ay

5

20
+
U4
Ay

4

12
+
U5
Ay

3

6
+
U6
Ay

2

2

]
+ b1y + b2,

(2.7) K = Gr
[
(ScU1

N + ψPrU1
A)
y7

42
+ (ScU2

N + ψPrU2
A)
y6

30
+ (ScU3

N + ψPrU3
A)
y5

20

+ (ScU4
N + ψPrU4

A)
y4

12
+ (ScU5

N + ψPrU5
A)
y3

6

+ (ScU6
N + ψPrU6

A)
y2

2

]
+ k1y + k2.

where U i
N , U i

A, i = 1, . . . , 6, consist of multiplications of constants aj , nj , ur,
j = 1, 2, r = 1, 2, 3. The expressions for U i

N , U i
A, i = 1, . . . , 6 are the following

(2.8)

U1
A =

(a1 + n1)a1
24

, U2
A =

(a2 + n2)a1
6

+
(a1 + n1)a2

24
,

U3
A =

u1a1
2

+
(a2 + n2)a2

6
, U4

A =
u1a2
2

+ u2a1,

U5
A = u3a1 + u2a2, U6

A = u3a2;

U1
N =

(a1 + n1)n1
24

, U2
N =

(a2 + n2)n1
6

+
(a1 + n1)n2

24
,

U3
N =

u1n1
2

+
(a2 + n2)n2

6
, U4

N =
u1n2
2

+ u2n1,

U5
N = u3n1 + u2n2, U6

N = u3n2.
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Constants bj , kj , j = 1, 2, are arbitrary.
The pressure in the mixture can be obtained with respect to the formula

(2.9) p(x, y) =
{ (a1 + n1)y

2

2
+ (a2 + n2)y + u1

}
x+

∫ y

0

[B(z) +K(z)]dz + p0

with arbitrary constant p0.
Expressions (2.3), where B(y) and K(y) are from (2.6) and (2.7), together with

(2.4) and (2.9) present the exact solution of equations (2.2).

3. Different statements of the boundary value problems
for heat and mass transfer in a horizontal layer and

their realization for the constructed solution

Let us discuss probable boundary conditions for the description of heat and
mass transfer in the horizontal layer shown in Fig. 1 by means of the constructed
solution (2.3), (2.4), (2.6)–(2.9). We consider the motion of binary mixture in a
long horizontal channel with rigid walls y = 0 and y = 1. Influence of different
aspects (layer width, gravity force, given flow rate and thermodiffusion) on the
process of binary mixtures separation is analysed in the next Section.

We start with the boundary condition for the velocity function u. Primarily,
the no-slip conditions u(0) = u(1) = 0 should be fulfilled. The first of them leads
to vanishing the constant u3 in formula (2.4). Furthermore, we assume that the
constant flow rate q is defined by the formula

(3.1)
∫ 1

0

u(y)dy = q = const.

The nondimensional value q is connected with its dimensional analog V by means of
the relationship q = V/(νρ0Gr). Further, we test four types of boundary conditions
for the temperature function. We suppose that temperature distribution is posed on
both walls of the channel. As the temperature has the form (2.3) inside the channel,
the same form for the temperature should be used in the boundary condition on
the walls. The second type of the conditions for the temperature is assumption
about thermal insulation of the boundaries. And the third and fourth types are
the mixed conditions. In this case, one wall is considered thermally insulated and
the other wall is heated with respect to law similar to given in (2.3).

For the function of concentration, a condition of absence of mass flux through
the both rigid walls is used. As the Soret effect is taken into account in the study,
the mass flux is driven by concentration and temperature gradients. The condition
contains two summands related to diffusion and thermal diffusion contribution into
flux and has the form

(3.2)
∂C

∂y
− ψ

∂T

∂y
= 0 at y = 0, y = 1.

The solution of boundary value problem for the function C (the last equation
in (2.2) and boundary conditions (3.2)) is defined up to a constant. It is necessary
to give additional condition for the function of concentration. We use requirement



BINARY MIXTURE CONVECTION UNDER THE SORET EFFECT ACTION 63

of the average concentration preservation in the form

(3.3)
∫ 1

0

C(x = 0, y)dy
due to (2.3)

=

∫ 1

0

K(y)dy = C0.

Further, we consider all boundary conditions in details.
I. Both rigid walls are heated according to linear law as defined by the form of

the temperature function, i.e.

(3.4) T (x, 0) = A1x+B1, T (x, 1) = A2x+B2,

where Ai, Bi, i = 1, 2, are given constants. Substituting y = 0 and y = 1 into
law for the temperature function in (2.3), taking into account the expression for
the function B(y) from (2.6) and comparing the obtained formula with the both
boundary conditions in (3.4), we obtain

(3.5)
a1 = A2 −A1, a2 = A1,

b1 = B2 −B1 −GrPr
[U1

A

42
+
U2
A

30
+
U3
A

20
+
U4
A

12
+
U5
A

6

]
, b2 = B1.

From the conditions for the concentration function (3.2) the following relationships
are derived

(3.6) n1 = ψa1, K ′(0)− ψB′(0) = 0, K ′(1)− ψB′(1) = 0.

Using formulas (2.6) and (2.7), from the second equation in (3.6) we can find that

(3.7) k1 = ψb1.

Conditions u(1) = 0, (3.1) and the last equation in (3.6) are used for the construc-
tion of the system of linear equations for the constants u1, u2 and n2. The solution
of the obtained system is

n2 =
ψ(A1 −A2)

2(ψ(A1 −A2) + 720q)
[A1(ψ − 1)−A2(ψ + 1) + 720q],

u1 =
3ψ(A1 −A2)

20
− (7A1 + 3A2)

20
− n2

2
− 12q,(3.8)

u2 =
ψ(A1 −A2)

30
+

3A1 + 2A2

60
+
n2
12

+ 6q.

The last constant to be found is k2. It is expressed from equality (3.3) in the
following way

(3.9) k2 = C0 −
k1
2

−Gr
[ScU1

N + ψPrU1
A

336
+

ScU2
N + ψPrU2

A

210

+
ScU3

N + ψPrU3
A

120
+

ScU4
N + ψPrU4

A

60
+

ScU5
N + ψPrU5

A

24

]
.

The formulas for U i
A, U i

N , i = 1, . . . , 5, in (3.5) and (3.9) are given in (2.8). The
found values of aj , bj , uj , j = 1, 2, from (3.5) and (3.8) should be substituted into
expressions (2.8). In such a way all constants included into the functions u, T and
C are defined. The function p can be found from formula (2.9) and the problem is
completely solved for this type of boundary conditions for the temperature function.
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Remark 3.1. It is interesting to note that if A1 = A2 and q = 0 simultaneously,
the solution of the posed boundary value problem does not exist. The denominator
in the expression for n2 in (3.8) vanishes in this case. If q ̸= 0 and A1 = A2, then
a1 = n1 = n2 = 0, the formulas for the functions u, T , C and p are essentially
simplier then derived above. Furthermore, the function C does not depend on the
x-variable. It means that the concentration field is homogeneous in all sections
y =const.

II. Both rigid walls are thermally insulated ones. It implies that the condition
∂T/∂y = 0 is fulfilled at y = 0 and y = 1. Then, the conditions of absence of
mass fluxes (3.2) are transformed into ∂C/∂y = 0 at y = 0 and y = 1. We find
the following constants: a1 = a2 = n1 = n2 = b1 = k1 = 0, u1 = −12q, u2 = 6q,
k2 = C0, and b2 remains arbitrary. Such a way the solution of the posed problem
is found up to two constants (b2 and p0)

u = 6q(y − y2), T = b2, C = C0, p = (b2 + C0)y + p0.

This solution is of no interest from the physical point of view because temperature
and concentration fields do not change.

III. The upper rigid wall is thermally insulated, the lower wall is heated with
respect to the linear law, i.e. the following relationships are valid

T = A1x+B1 at y = 0,

∂T

∂y
= 0 at y = 1.

Here A1, B1 are the given constants. The full condition of zero mass flux (3.2) is
fulfilled at y = 0. At y = 1 the derivative of the function C vanishes, i.e. (3.2)
transforms to the condition ∂C/∂y = 0. We find integration constants in the
following way: from equation T (x, 0) = 0 constants a2 = A1 and b2 = B1 are
defined; from equations ∂T/∂y(x, 1) = 0 and ∂C/∂y(x, 1) = 0 constants a1 = 0,
n1 = 0, b1 = −A1qGrPr and k1 = −A1ψqGrPr; from the full condition for the
concentration (3.2) at y = 0 we have equation K ′(0) − ψB′(0) = 0. Using this
equation together with condition u(1) = 0 and the expression for the flow rate (3.1),
constants n2, u1 and u2 are written as follows

n2 = 0, u1 = −A1

2
− 12q, u2 =

A1

12
+ 6q.

The remain constant k2 is expressed from integral condition (3.3)

k2 = C0 −A1GrPrψ
( A1

1440
− 7q

20

)
.

The solution can be constructed with respect to formulas (2.3), (2.4), (2.6)–(2.9),
using the found constants listed above. It should be noted that in this case the
function C does not depend on x-variable.

IV. The lower rigid wall is thermally insulated, the upper wall is heated with
respect to the linear law, i.e. the following relationships are valid

∂T

∂y
= 0 at y = 0, T = A2x+B2 at y = 1.
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Here A2, B2 are the given constants. The full condition of zero mass flux (3.2)
is fulfilled at y = 1. At y = 0 the derivative of the function C vanishes, i.e.
∂C/∂y = 0. The process of finding integration constants is very similar to case III.
Here, we give the constants without details

a1 = n1 = n2 = b1 = k1 = 0, a2 = A2, b2 = B2 −A2GrPr
( A2

720
− q

2

)
,

u1 = −A2

2
− 12q, u2 =

A2

12
+ 6q, k2 = C0 +A2GrPrψ

( A2

1440
− 3q

20

)
.

It can be seen that in this case the function C does not depend on x-variable
as well as in case III.

Thereby, in this section, all possible boundary value problem statements for
the description of heat and mass transfer in the horizontal layer are analysed and
exact solutions in the closed forms are constructed. The solution from item I is
used in the next section for further study of heat and mass transfer and thermal
diffusion separation in the layer between two rigid walls. The choice of this solution
for further application is conditioned by dependence of the concentration field on
both spatial coordinates.

4. The motion of binary mixture between the rigid walls

In this section, we demonstrate the use of the solution constructed for binary
mixture in channel with rigid walls heated with respect to linear law (it corresponds
to item I from Section 3). The ethanol-water mixture with concentration of ethanol
70 % is utilized for the analysis. The physical parameters of the mixture are given
in Table 1. The data are found in [14–16].

Table 1. Physical parameters of water-ethanol mixture (70 % of ethanol)

ν, m2/s 2.345 · 10−6

χ, m2/s 0.843 · 10−7

D, m2/s 4.481 · 10−10

Dθ , m2/(K·s) −0.386 · 10−12

ρ0, kg/m3 863.4

β1, 1/K 0.994 · 10−3

β2 0.277

C0 0.7

For the plotting the velocity profile with respect to formula (2.4) with constants
from (3.8) we need to have values Aj , j = 1, 2, and flow rate q. The constants Bj ,
j = 1, 2 are not included into function u. They are used for the calculation of
temperature and concentration functions. The following parameters are used for
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visualization of the solution

(4.1)
T |y=0 = A1dimx+B1dim = 15x+ 20◦C,

T |y=L = A2dimx+B2dim = x+ 10◦C

in the dimensional variables. The upper wall y = 1 is more heated in this case.
The values of Ajdim, Bjdim, j = 1, 2, are recalculated in the dimensionless variables
with respect to relationships

Aj =
AjdimL

△T
, Bj =

Bjdim

△T
,

where temperature scale is △T = 20◦C.
We proceed with study of influence of three factors on the binary mixture

separation in the layer: layer width L, value of the flow rate V and the action of
the mass force gravity.

4.1. Influence of the channel geometry on the motion. We consider
three values of the layer width L = 0.001, 0.003, 0.009m. The flow rate in the dimen-
sional variables is 10−6kg/(m·s) and the acceleration of the gravity is
g = 9.8 m/s2. The velocity profiles depending on the layer width are shown in
Fig. 2a: curve 1 corresponds to L = 0.001m, curve 2 is constructed for L = 0.003m,
and curve 3 matches up L = 0.009m. Further growth of the layer width (beginning
from L =0.014 m) leads to loss of physical meaning of the problem. The changes
of the concentration are out of the interval (0, 1). Curve 1 in Fig. 2a looks like
the Poiseuille profile. An increase in the layer thickness conduces to a decrease in
absolute value of velocity and the appearance of reverse flow zones, the function
of the velocity changes a sign (curves 2,3). The graphs of the velocity function
are consistent with the pressure gradient profiles shown in Fig. 2d: the fluid moves
from an area of higher pressure to an area where the pressure is lower (in the case of
L = 0.001m px < 0 ∀y ∈ [0, 1]). When the layer thickness is growing up, the vis-
cous effects become weaker. It explains the increase of the velocity intensity close
to the walls and its decrease in the center of the layer, where the maximal pressure
gradient is observed. In this case, the ethanol component carried by the convective
flow accumulates in the near-wall region in the vicinity of the line x = 0 (Fig. 4c).

We observe a rise of temperature gradients along the layer width. The dimen-
sionless temperature changes from T = 0.5 to T ≈ 1.01 (Fig. 3a), to T ≈ 1.03
(Fig. 3b), to T ≈ 1.09 (Fig. 3c). The concentration drop grows up also at the layer
expansion. The concentration changes from C ≈ 0.639 till C ≈ 0.741 (Fig. 4a),
from C ≈ 0.618 till C ≈ 0.740 (Fig. 4b), from C ≈ 0.577 till C ≈ 0.760 (Fig. 4c)
with respect to the growth of layer thickness. Thus, the greatest inhomogeneities
of temperature field and in the ethanol distribution take place in the layer with
the maximal thickness, i.e. L = 0.009m.

4.2. Influence of flow rate on the motion characteristics. We put the
layer width as L = 0.003m. The influence of changes of the flow rate q on
the velocity, temperature and concentration is under study for the same mix-
ture of ethanol (70 %) and water (30 %). We use the following values of flow rate
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Figure 2. The velocity profile u (a, b, c) and the pressure gradient
px (d, e, f) depending on the layer thickness (a, d): curve 1 corre-
sponds to L = 0.001m, curve 2 – 0.003 m, curve 3 – 0.009m; de-
pending on flow rate (b, e): curve 1 corresponds to V = 0 kg/(m·s),
curve 2 – V = 10−6 kg/(m·s), curve 3 – V = 10−4 kg/(m·s) (curve 3
is scaled, see explanation in section 4.2); depending on influence
of gravity force acceleration (c, f): curve 1 corresponds to micro-
gravity action g = g0 · 10−2 (curve 1 is scaled, see explanation in
section 4.3), curve 2 is for terrestrial gravity and g = g0 = 9.8m/s2,
curve 3 – for hypergravity g = g0 · 102

V = 0, 10−6, 10−4 kg/(m·s) in the dimensional variables. The profiles of velocity
and pressure gradient depending on V are shown in Fig. 2b,e. Intensification of the
motion is observed when the value of V increases. The greatest value of the flow
rate corresponds to the most essential changes of the velocity function. We pay at-
tention that curve 3 in Fig. 2b is presented for a half-values of real velocity function
for more clear visualization. In this case, the velocity profile is close to the Poiseuille
profile, zones of inverse motion are absent for the value of V = 10−4 kg/(m·s). The
viscous effects in the near-wall region influence weakly on motion at big flow rate
values. And vice versa, at zero or small value of flow rate (V = 10−6 kg/(m·s))
the essential effect of viscosity in near-wall regions can be observed. It explains
the behaviour of curves 1, 2, 3 in Fig. 2b. In the same manner as the analysis of
the layer thickness influences the flow, the conclusion is justified that the velocity
distribution depending on the flow rate of the mixture is consistent with the be-
haviour of the pressure gradient (Fig. 2e). Minimal velocity values are achieved at
maximal flow pressure gradients (curves 1, 2 in Fig. 2b,e).

Further, the temperature and concentration fields depending on the flow rate
are considered. If we substitute the found integration constants into formula for the
temperature function T = (a1y+a2)x+B(y), where B(y) is presented in (2.6), then
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(a) (b)

(c)

Figure 3. Field of temperature depending on layer width: (a) are
for L = 0.001m; (b) are for L = 0.003m; (c) are for L = 0.009m

we observe that the value of V is contained in expression for the function B only
in terms which give small contribution into changes of the function T . It means
that flow rate influences heat distribution weakly. In the dimensionless variables,
the temperature changes in the interval from 0.5 till 1.1125 for all values V used.

The influence of flow rate values on reconstruction of the concentration field is
estimated below. If the flow rate vanishes then there are two mechanisms affecting
the flow. They are temperature drop on the walls and thermal diffusivity. This is
easy to check looking at formulas (2.3), (2.4), (2.6) and (2.7) taking into account
the constants from formulas (3.6)–(3.9). In this case, it can be observed that
drops of the concentration are the greatest among the considered values of V (see
the second column in Table 2). The concentration changes from 0.614 till 0.760
at V = 0. The thermodiffusion effect prevails in such configuration. When the
value of V increases up to 10−6 kg/(m·s) the competition of mechanical effects and
diffusion transition occurs in flow. The variations of the concentration are from
0.630 till 0.760 for this value of flow rate (see the third column in Table 2). At last,
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(a) (b)

(c)

Figure 4. Field of concentration depending on layer width:
(a) are for L = 0.001m; (b) are for L = 0.003m; (c) are for
L = 0.009m

for the greatest value of V = 10−4 kg/(m·s) strong mechanical effects suppress the
weaker thermodiffusion effect. The smallest drops of ethanol concentration (see the
fourth column in Table 2) take place in this case.

Table 2. Changes of concentration at increasing flow rate

V , kg/(m · s) 0 10−6 10−4

△C, % 14.6 13.0 12.5

4.3. Influence of gravity action on the binary mixture motion. The
layer width L and flow rate V are equal to 0.003m and 10−6 kg/(m·s) respectively.
We analyse the gravity action on the mixture motion for g = g0·10−2 (microgravity),
for g = g0 · 102 (hypergravity) and g = g0 = 9.8m/s2. The latter corresponds to
the value of acceleration of gravity force in the Earth conditions. The profiles of
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velocity and pressure gradients depending on g are shown in Fig. 2c,f. The greatest
values of velocity function appear at microgravity. Curve 1 in Fig. 2c corresponds
to half-values of real velocity function for better visualization. The velocity graph
is similar to the Poiseuille profile in this case. There are the zones with inverse
flow in the terrestrial and hypergravity conditions. The velocity changes a sign
and becomes less with respect to absolute value in comparison with the velocity at
microgravity (curves 2, 3 in Fig. 2c). As in the cases studied before in Sections 4.1
and 4.2 the greatest values of pressure gradient correspond to the smallest values
of the velocity. The effect of viscosity of liquid can be observed near the walls of
the channel.

Table 3. Changes of concentration in dependence of gravity force action

g, m/(s2) 9.8 · 10−2 9.8 9.8 · 102

△C, % 12.7 13.0 14.8

If we consider concentration as functions of gravity force acceleration, it allows
to trace that inhomogeneity of the concentration increases at growth of g. The
difference between maximum and minimum of concentration is presented in Table 3.
It is necessary to note that the solution predicts that the influence of gravity changes
on temperature function is weaker than on concentration. The reason is also in the
form of the function T , where factor g is in the function B only.

In conclusion, some important remarks should be formulated concerning the
analysed solution.

Remark 4.1. In all configurations studied above, the normal thermal diffusion
effect is preserved: ethanol accumulates near the more heated wall y = 0 as a
lighter component of the mixture (its density is less than the water density). This
result is in agreement with experimental works (e.g., [17]), where it is proved that
the mixture of ethanol-water demonstrates normal thermal diffusion effect at the
concentration of the ethanol of more than 30 %.

Remark 4.2. It should be noted that if in all above examples we set the
separation ratio ψ = 0, i.e. if we do not take into account the thermal diffusion
effect, the concentration field does not change, the liquid remains homogeneous
for all other changing parameters of the problem. This derivation follows from the
substitution of ψ = 0 into formulas (2.7) and then into (2.3) and simple calculation,
which leads to C(x, y) ≡ C0.

5. Conclusion

Mathematical modelling of the binary mixture flows is more complicated task
than the same problem concerning one-component liquid motions. Additional un-
known function of concentration appears in equations of heat and mass transfer.
It should be connected with other unknown functions (velocity, temperature, pres-
sure). It also influences solution of the problem and behaviour of the flow at whole.
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In this paper, we neatly construct the exact solution of equations of convective heat
and mass transfer, provide the analysis of different types of boundary conditions for
the temperature functions and treat the influence of gravity force, flow rate in cross
section and layer width on process of thermal diffusion separation of ethanol-water
mixture in a long horizontal layer.

The basic conclusions are formulated further. When the separation ratio ψ
does not vanish, the heterogeneity of the concentration field is more pronounced at
the large layer thickness, zero flow rate and in the conditions of hypergravity action.
Apparently, these conditions seem to be optimal for controlling the separation of
the mixture filling the horizontal layer into components. Thereby, the constructed
solution correctly predicts all flow characteristics and their changes depending on
the processing parameters. The obtained solution replenishes the database of exact
solutions suitable for mathematical modelling of heat and mass transfer processes
and can be useful for more clear understanding of the thermal diffusion separation
in mixtures at different regimes of flow.
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КОНВЕКЦИJА БИНАРНЕ СМЕШЕ У ХОРИЗОНТАЛНОМ
КАНАЛУ ПОД ДЕJСТВОМ СОРЕОВОГ ЕФЕКТА

Резиме. Разматра се математички модел коjи описуjе стационарно струjање
бинарне течне смеше. За посебан облик функциjа температуре и концентрациjе
конструисано jе тачно решење jедначина конвективног преноса топлоте и ма-
се. Проучаваjу се све могуће формулациjе граничних проблема у циљу анализе
термичке дифузионе сепарациjе бинарне смеше у дугом хоризонталном каналу
са крутим зидовима. Утврђено jе да само jедна од формулациjа (при нехомо-
геном загревању оба крута зида) доводи до изводљивих резултата. Уз помоћ
конструисаног решења за поменути гранични проблем анализиран jе ефекат
дебљине слоjа, дате су брзине протока и деjства силе гравитациjе на процес
сепарациjе.
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