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CONSTRUCTIONS OF UNIFORM DISTRIBUTIONS 
IN TERMS OF GEOMETRY OF NUMBERS 

M. M. Skriganov 

Abstract. In the paper the author proves that the points of admissible lattices in the Eu
clidean space are distributed very uniformly in parallelepipeds. In particular, the remainder 
terms in the corresponding lattice point problem are found to be logarithmically small. As 
an application of these results point sets with the lowest possible discrepancies in the unit 
cube and quadrature formulas with the smallest possible errors in the classes of functions 
with anisotropic smoothness are given in terms of admissible lattices. 

Introduction 

In the present paper we study admissible lattices with respect to the norm form 
NmX — xi... x3, X = (xi,..., xs) e R*, i.e., the lattices Г which satisfy the condition 

inf |Nm7|>0. 
7€Г\{0}' 

Well-known relationships between algebraic number fields and the lattices in the Eu
clidean space give broad classes of admissible lattices for all dimensions s ^ 2. A series 
of remarkable, properties of these lattices has been studied in geometry of numbers and 
in algebraic number theory (see, for example, Borevich and Schafarevich \1], Cassels [2], 
Gruber and Lekkerkerker [3]). 

In the present paper we obtain new results concerning admissible lattices. It turns 
out that the points of an admissible lattice have an amazingly uniform distribution in 
parallelepipeds with edges parallel to the coordinate axes. More precisely, one of our 
main results can be formulated as follows (cf. Theorem 1.1 below). Let an admissible 
lattice Г с Rs and a parallelepiped П с R' of the indicated type be given. Let til be 
the dilatation of П by a factor t > 0, let ffl + X be the translation of ffl by a vector 
X e Re, and let N(tU + X, Г) be the number of points of Г lying inside ffl + X. Then 
the following asymptotic formula holds as t —• oo: 

щт + x,r) = g5 f + ось*-1 *). (o.i) 
Key words and phrases. Lattice point problem, uniform distributions, quadrature formulas. 
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Moreover, this formula is valid uniformly both for X eRs and for parallelepipeds П of 
bounded volume. 

It is reasonable to expect that the bound for the remainder term in formula (0.1) is 
best possible. However, we can prove this conjecture only in the dimension s = 2. At 
the same time, for X outside a set of very small measure the bound for the remainder 
in (0.1) can be improved up to a magnitude of order 0(ln~*~ i). 

It should be pointed out that if we take the integer point lattice Z* instead of an 
admissible lattice Г, then the remainder term in the corresponding asymptotic formula 
will be of order 0(ts~l). The phenomenon of such strong dependence of the remainder 
term upon the choice of the lattice as well as the possibility of logarithmically small 
bounds for the remainders in the lattice point problem were first discovered and studied 
in the author's papers [4, 5, 6]. In the present paper these results are given in a final 
form. 

As an application of our results we give new and very simple constructions of point 
sets with the lowest possible discrepancies. Let Ks be the unit cube in Rs. Let Г - X be 
the translation of the lattice Г by a vector -X and let £-1(Г - X) be the contraction 
of the shifted lattice Г - X by a factor t > 0. Let us introduce the following point set in 
the unit cube: 

П«,,(Г) = t'l(T -Х)П К*. (0.2) 
The number of elements in the set (0.2) is equal to Nt}x = N(tK3 + X, Г). 

We are interested in the uniformity of the distribution of the points of the set (0.2) 
as t -• oo. To control the irregularity of distributions, one uses the so-called extremal 
discrepany A(-) and the ./^-discrepancies Ag() . For example, the extremal discrepancy 
for the set (0.2) can be defined in the following way: 

Д(П,,Х(Г)) = sup \N(iU + X,T) - voin N(tKs + X,I% (0.3) 
пек* 

where the supremum is taken over the parallelepipeds П contained in Ks and whose 
edges are parallel to the coordinate axes (all details will be given in Section 2). 

In general, for arbitrary lattices, say for the lattice Z5, the sets (0.2) are distributed 
as t -> oo with very poor quality of uniformity. It is remarkable that for admissible 
lattices, the sets (0.2) behave completely differently. Let Г be an admissible lattice, then 
the comparison of the asymptotic formula (0.1) and definition (0.3) gives the following 
bound as t —> oo (cf. Corollary 2.1): 

Д(П«,х(Г)) < In'"11 < In5"1 Nt,x. (0.4) 
Moreover, this bound is valid uniformly for X e Rs. 

In addition we prove that for X outside a set of very small measure, the following 
bounds for £«,-discrepancies hold as t —• oo: 

Д,(П«,х(Г)) < In1*11 < ln^ 1 Nttx. (0.5) 
It is well known that for q > 1, bounds (0.5) are best possible, i.e. these bounds cannot be 
improved for any set with the same number of elements. Hypothetically, bounds (0.4) are 
also best possible. However, at present, this conjecture is proved only in the dimension 
s = 2 (all necessary references will be given in Section 2). 

We see from bounds (0.4) and (0.5) that the point sets (0.2) constructed in terms 
of admissible lattices fill the unit cube very uniformly as t - • oo. Moreover, it is worth 
noting that the least bounds for the discrepancies can be reached by very regular sets 
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(0.2), that is in contrast with a conventional point of view when uniformly distributed 
sets are regarded as disordered and chaotic. 

Bounds (0.4) and (0.5) enable us to use the points of the sets (0.2) as the nodes 
for numerical evaluation of multiple integrals. In the present paper we give very simple 
constructions of quadrature formulas by means of admissible lattices, and we prove that 
these formulas have the best possible accuracy in the general classes of functions with 
anisotropic smoothness (cf. Theorem 2.1). 

As is evident from the foregoing, the subject matter of the present paper is at the 
crossroads of several areas. Two of them are geometry of numbers and uniform distri
bution theory, respectively. Advanced function theory can be mentioned as the third area 
because rather refined estimates in the spirit of the Littlewood-Paley theory will be used 
in proving our theorems. 

Earlier, the most part of this paper was presented in the author's note [7] and the 
preprints [8, 9]. 

Applications of our results and methods to algebraic number theory are given recently 
by N. A. Nikichine and the author [10]. 

Added in proofs. Applications to stectral theory are given very recently in the paper: 
Skriganov M. M., Anomalies in spectral asymptotics, Dokl. Akad. Nauk of Russia (1994, 
to appear). In this paper, on the base of geometry of numbers, the author gives examples 
of elliptic pseudo-differential operators on compact manifolds with logarithmically small 
error terms in spectral asymptotics. 

Our paper consists of eight sections. In Sections 1 and 2 the main results are stated. 
Sections 3 and 4 contain certain auxiliary results from the geometry of numbers and 
from calculus. A version of the Littlewood-Paley theory is described in Section 5. Basic 
bounds for sums over admissible lattices are given in Section 6. Sections 7 and 8 devoted 
to a proof of our main results. 

Finally, I would like to express my sincere appreciation to V. A. Bykovskii, 
S. V. Kislyakov, and now the late B. F. Skubenko for useful discussions concerning 
the matter of this paper. I also thank Irina Izergin for the help in preparation of the 
manuscript. 

§1. Statement of the results: distributions of lattice points inside parallelepipeds 

First we introduce some notation and definitions. Let R* = {X : X = (ж ь . . . , х Д 
XJ, e R } be the s-dimensional Euclidean space. We define the product of vectors X = 
(xi,...,x3) and Y = (&, . . . ,y , ) as the vector X-Y = (xiyi,...,xsya). We set 

3 3 

NmX = Y[xh TrX = YsX>' (L 1) 
i=i ;=i 

It is obvious that NmJ • Y = N m l N m K In this notation the standard metric and 
inner products in R5 can be written as follows: 

\X\2 = TTX2, X2=XX, (X,Y)=TrX-Y. 
The space Rs with the above vector multiplication X • Y becomes a commutative ring 

with the unity Л = ( 1 , . . . , 1). The zero divisors in this ring satisfy the relation NmX = 0. 
Let 

r = { X G R e : N m X / 0 } 
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be the set of invertible elements of the ring. Note that Ea coincides with R5, in which 
the coordinate hyperplanes are removed. For X € E* wt define X~x = (xf *,.. . ,x7х), 
so that X • X'1 = X"1 • X = Л. Let 

U m = { t / e E e : | N m i 7 | = l } (1.2) 
be the group of unimodular points of R*. For any X e EJ, one has a unique represen
tation 

X = tU, t = | N m X | ^ > 0 , [ / = f 1 l G U m . (1.3) 
Let О с R5 be a compact body, vol О the volume of О, О + A" the translation of О 

by a vector X € R*, and T • 0 the body obtained by multiplying every point of О by 
a vector T G Es, where we have volT • О = |NmT| vol (9. Note that multiplying О by 
T = ( i i , . . . t,) may be regarded as a nonhomogeneous dilatation of О by a factor tj in 
the direction of the j-th coordinate axis. The homogeneous dilatation of О by a factor 
* > O, which corresponds to T = ГЛ = (*,..., t), will be denoted by Ю. Let K* = [§; §] * 
be the unit cube in Rs centered at the origin and with edges parallel to the coordinate 
axes. Then 

s 

T Ks = ]J 
i = i 

is a parallelepiped centered at the origin with edges parallel to the codordinate axes and 
with the volume equal to | NmT|. 

Let Г с R* be a lattice, i.e., a discrete subgroup of the group of translations of R5 

with compact fundamental set /*(Г) = R*/r (see [2] and [3] for details); let det Г be the 
determinant of Г, where we have det Г = vol T(T); let Г + X be the translation of Г by a 
vector X, and let T • Г be the lattice obtained by multiplying every point of Г by a vector 
T € E*, where we have detT • Г = |NmT|detr. Suppose that tT is an homogeneous 
dilatation of Г by a factor t > Q, V is the integer coordinate lattice, and Z is the ring 
of integers. 

Let 
NmT= inf |Nm 7 | (1.4) 

7€Г\{0}' 
be the homogeneous minimum of the lattice Г with respect to the form Nm X. We recall 
(cf. [2, 3]) that a lattice Г is called admissible if NmT > 0. It is obvious that for an 
admissible lattice Г, all lattices Г • Г, T e E*, are also admissible, since NmT • Г = 
|NmT|Nmr. Well-known examples of admissible lattices can be described as follows. 

1. Let F be a totally real algebraic number field of degree s and let a be the canonical 
embedding of F in the Euclidean space Ra 

a: F Э i -+ *(0 = MO, • • • ,*.(0) € R*, 
where { o j f are s distinct embeddings of F in the field R of real numbers. It is easy 
to check that Nmcr(£) is the norm and Tr <r(() is the trace in the field F. Therefore, 
under the embedding a a full Z-module M с F corresponds to an admissible lattice 
Г м = °{M) (see [1, Chap. H] and [3, Sect. 4]). 

2. In the case of dimension 2, a more general construction is known. Namely, let a 
and a ' / a b e real irrational numbers with bounded partial quotients in their continued 
fractions, then the lattice defined by the formula 

Fa)0r' = { 7 G R 2 : 7 = (n + am, n + a'mm); n,m 6 Z } 

N.N 
2 ' 2 
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is admissible (cf. [3, Sect. 43.4 and XIV.5]). The lattices Га,а/ are a generalization of the 
lattices Тм given above. Indeed, Га,а/ = Тм for quadratic irrationalities а, а', conjugate 
in some real quadratic field Q(y/5) and for the module M = {1,а} с Q( >/£>). 

The basic property characterizing admissible lattices is the compactness property (in 
the sense of Mahler, see [2, Chap. V]; [3, Sect. 17]) for the following set 

U[T] = {UT,Ue Um} 
in the set of all lattices of given dimension. It would be interesting to study in details 
intimate relationships between the structure of the compact set U[T] and the distribution 
of points of the lattice Г. Here these relationships are studied on the level of the following 
two characteristics of U\T] which are unimodular invariants: det Г and NmT. 

For any discrete set А С R3, we define 
N{0, Л) = card О П A = £ x ( 0 , 7 ) , (1.5) 

уел 
where x(0,X), X e R3, is the characteristic function of O. In particular, N(0,T) is 
equal to the number of points of the lattice Г inside the body O, and we have 

N(0 + X,T) = N(0,T-X), N{T-0,T) = N(0,T-1 • Г). (1.6) 
We define R(G,T) by setting (cf. [3, 11]) 

N{0,T) = ^ + R(0,T). (1.7) 
From (1.6) it follows that 

R{0 + X, Г) = R(0, Г - X), R(T • О, Г) = R{0, T"1 • Г). (1.8) 
In particular, the remainder R(0 + X, T) is a periodic function of X e R3 with the 
period lattice Г. We introduce the following quantities: 

г (0 ,Г)= sup |Д(0 + Х,Г)|, (1.9) 
Х€^(Г) 

r f ( 0 , r ) = [(detr)"1 / |Я(0 + Х,Г)|*<**]*, (1.10) 

where q > 0 is a real number. 
We are interested in finding bounds for (1.9) and (1.10) when О = T • K3 and 

|NmT| -• oo. In general, for arbitrary lattices (say, for the lattice Z3) relation (1.7) is 
not even an asymptotic formula as | NmT| -* oo since the remainder term R(T-K3+X, Г) 
in (1.7) may have greater order than the principal term | NmT|/ det Г. Nevertheless, the 
following statement holds. 

Theorem 1.1, If T с R3 is an admissible lattice, then for all T eR3 one has the bounds 
r(T • К', Г) < с(Г)[1п(2 + | NmTl)]'-1 (1.11) 

г,(Г-К',Г) <c f (r)pn(2+|NmT|)]T i . (1.12) 
The constants in (1.11) and (1.12) depend upon the lattice Г only by means of the invariants 
detr arc/Nml\ 

Throughout this paper the letters с and С will denote different positive constants 
whose exact values will not be the particular concern of us; when necessary, we indicate 
the dependence of these constants upon additional parameters. 
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Remark 1.1. Note that the above bound (0.1) is a direct corollary to bound (1.11). As 
was mentioned, logarithmically small bounds for remainders in the lattice point problem 
were given first in the author's papers [4, 5, 6]. Bounds (0.1) and (1.11) were proved in 
[5] in the dimension s = 2; at the same time in dimensions s > 2 similar bounds with 
the exponent of the logarithm equal to s were proven in [5] for the lattices Тм. The 
reduction of the exponent from s to s - 1 given in bounds (0.1), (1.11) is of particular 
importance because there are reasons to expect that bounds (0.1) and (1.11) are best 
possible. However, we can prove this conjecture only in the dimension 5 = 2 (see Remark 
2.2 below). Concerning bounds (1.12), we can prove that they are best possible for all 
О 2 and q > 1 (see Remark 2.2). Earlier weaker bounds for the metrics (1.10) were 
given in [5]. In the present paper we shall not dwell on questions of unimprovability of 
our results. 
Remark 1.2. A careful analysis of Theorem 1.1 shows that the magnitude of the remain
der R(T • К3 + Х,Г) jumps from bound (1.12) to bound (1.11) on a set of very small 
measure in X e f(T)- More precisely, this observation can be formulated as follows. 
Let the assumptions of Theorem 1.1 be valid. Then for every T € E* and for arbitrary 
e > 0, there exists a subset Ae(T) с Т(Т) whose measure is less than e and such that 
one has the bound 

\R(T • Ks + X,T)\ < c6(T)e-6[ln(2 + (NrnTI)]^, (1.13) 
provided that X e ^(Г) \ Ae(T). In estimate (1.13) S > 0 is arbitrarily small. 

It would be very interesting to study in detail the structure of these exeptional sets 
Ae(T). In particular, we would like to know: 

(i) whether the sets Ae(T) are nonempty; 
(ii) whether the sets Ae(T) have a positive measure; 

(Hi) whether it is possible to replace the power estimate e~6 in (1.13) with arbitrary 
6 > 0 by an exponentially small bound. 

§2. Statement of the results: uniform distributions and quadrature formulas 

Now we turn to the description of our constructions of the many dimensional uniform 
distributions. First we recall some definitions and results from this field. For details we 
refer to the books [12] by Kuipers and Niederreiter, [13] by Beck and Chen. 

Let Am С Ks be a set consisting of m > 1 points in the unit cube K*. We set 
, i 

q > 0, (2.1) A(Am) = sup \D(T)l Aq(Am) = f / ID(T)\4T 
и» 

where Г = [0; l]s is the shifted unit cube: I* = К* + 1Ц, and 
D(T) = N(T • K*, Am) - m|NmT|. (2.2) 

Quantities A( ) and Д д ( ) are called the extremal discrepancy and the Lq — discrepancy, 
respectively. They give measures of irregularities of distributions. Namely, the points of 
sets Am uniformly fill out the unit cube K* as m -• oo if т~гА(Ат) -» 0 or (that is 
the same) m""1 Aq(Am) -* 0. 

The construction of sets with the smallest discrepancies is the main problem of the 
theory of uniform distributions. It is known that for an arbitrary set Am and for q > 1, 
the following lower bound is valid: 

Aq(Am) > cg^ln^ m. (2.3) 
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This lower bound was proved by Roth [14] for q = 2 and by W. M. Schmidt [15] for all 
q > 1 (cf. [12, 13]). Hypothetical (cf. [13, p. 6 and p. 283]), for an arbitrary set Am 
one also has the following lower bound: 

А ( 4 ) > с , Ь ы т . (2.4) 
This conjecture was proved by W. M. Schmidt [16] in the dimension s = 2 (cf. [12,13]). 
For s > 2, this problem is still opened. 

The lower bounds (2.3) and (2.4) are reached for certain sets. Well-known examples 
of such sets were given by Roth [17] for the £2-discrepancy and by Chen [18] for all 
Lg-discrepancies, q > 0, and by Halton [19] for the extremal discrepancy. In dimensions 
s > 2 these sets are suitable modifications of the socalled Halton-Hammersly-Roth 
sequence (cf. [12, Chap. 2, Sect. 3]; [13, Sect. 3.2]). 

In the present paper we give new constructions of the sets with the smallest lower 
bounds (2.3) and (2.4). Let us introduce the following finite subset in the unit cube: 

ПТ|я(Г) = T- 1 • (Г - Z) n K9, (2.5) 
i.e., we translate the lattice Г by a vector - Z , then multiply the shifted lattice Г - Z by 
a vector Г" 1 , T € E5, and consider the points of T _ 1 • (Г - Z) which lie in the cube Ks. 
It is obvious that the number of elements in the set (2.5) is equal to 

NT,z = N(K°, T"1 • (Г - Z)) = N(T • K* + Z, Г) (2.6) 
(cf. (1.6)). 

We are interested in the uniformity of distribution of the points w e Пт,я(Г) as 
| NmT| —• oo. In general, for arbitrary lattices (say, for the lattice Zs) the sets (2.5) are 
not uniformly distributed as | NmT| —• oo. Nevertheless, Theorem 1.1 gives the following. 

Corollary 2.1. If Г с Rs is an admissible lattice, then the following assertions are valid: 
1 For ШТ eE* and Z € Re, one has the bound 

Д(ПТ|*(Г)) < с(Г)[1п(2 + | Nm Т\)У~г ^ С(Г)[1п(2 + N^z)}*-1. (2.7) 
2 For every T e Es, there exists a vector Z(T) e R* which may depend on q>0 and 

such that the following holds: 
Д,(От,*(Т>(Г)) < с,(Г)[1п(2 + |NmTI)] 1 ^ ^ Сд(Г)[1п(2 + NT^T))]^. (2.8) 

Proof. Using formulas (1.6), (1.7), (2.5), (2.6), we obtain the following expression for 
the function (2.2) with Am = ftr,z(r): 

D(X) = R(T • X • K* + Z,T) r- |NmX\R(T • Ks + Z,T). 
Hence we have the following inequalities for discrepancies (2.1): 

Д(Пт,я(Г)) ^ sup \R(T X • K° + Z,T)| + \R(T • K* + Z,T)|, (2.9) 
X€fl' 

д;(ПТ|*(Г)) ^ 2*-1 j / \R(T . X • Ks + Z,T)\'dX + \R(T • K° + Z , r ) | « | . (2.10) 

Let Г be an admissible lattice. Now bound (2.7) follows from (2.9) and (1.11). To 
prove (2.8), we integrate (2.10) over the fundamental set ^*(Г). Using (1.12), we obtain 

( d e t l T 1 J AJ(O r ,z(r))^Z < с?(Г)[1п(2 + | N m T | ) ] H 4 

This inequality immediatly implies the existence of a vector Z(T) € ^(Г) satisfying (2.8). 
The proof is completed. 
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Remark 2.1. It is useful to keep in mind that for any admissible lattice Г and for each 
fixed Z e R9, the function of Г 6 E* given by NT,z = N(T • K* + Z,T) takes all 
positive integer values. This follows from the fact that any hyperplane in R* given by 
the equation XJ = a, a € R, contains at most one point of Г (see Lemma 3.1 below). 
Thus, our construction (2.5) gives the examples of uniform distributions with an arbitrary 
number of elements. 
Remark 2.2. The arguments used ip proving Corollary 2.1 show that bounds (1.12) are 
best possible for all s ^ 2 and q > 1 and that bound (1.11) is the best possible for 
s = 2, since otherwise one could construct the sets (2.5) which would break the lower 
bounds (2.3) and (2.4), respectively. Similarly, bound (1.11) is best possible for all s if 
the conjecture (2.4) is valid in an arbitrary dimension. 

Earlier weaker bounds for discrepancies of the sets similar to (2.5) were given by 
Frolov [20] and by the author [4, 5]. 

Corollary 2.1 shows that the sets (2.5) constructed in terms of admissible lattices 
fill out the unit cube very uniformly. This circumstance enables us to use the points 
w £ HT,z(r) as the modes for the numerical evaluation of з-multiple integrals. Thus, 
bound (2.7) combined with the Koksma-Hlawka inequality (see [12, Chap. 2, Sect. 5]) 
leads immediatly to the following 

Corollary 2.2. Let Г с R* be an admissible lattice and let f(X) be a junction of bounded 
variation Уагнк f (in the sense of Hardy and Krause) defined on the cube K*. Then for 
| Nm T\ -> oo, the following bound holds: 

i '"* u>enT,z(r) 
< c ( r ) V a r H K / V „ l j V r ' Z (2.11) 

NT,Z 

(c/ (2.6)). 
Now we describe our results concerning quadrature formulas for functions with 

anisotropic smoothness. Let 

9a?i... dx9 
be a differential operator. For any integer / > 1 and a real number q > 1, the anisotropic 

о 

Sobolev space Vj(K') is defined as the space of functions / on R* with compact supports 
lying inside the unit cube Ks and where the mixed partial derivative Dlf exists (in the 
weak sense) and Dlf e Lq(K8). This space of functions can be normed by the expression 

\\fh« = U\&f(X)\'dXy. (2.13) 
к* 

Note that expression (2.13) is a norm since the functions / are supported in K*. The 
о 

resulting normed space is complete. The main facts about the spaces Vĵ (K*) are collected 
in Section 4. In particular, without loss of generality we can assume that the functions 

о 

/ (X) e V[(K8) are continuous (cf. Lemma 4.1 below). 
For f(X) e Vl

k(K>) we define *(/, Г) by setting 
' f(X) dX = det Г £ / ( 7 ) + *(/, Г). (2.14) 

76Г / • 
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We regard relation (2.14) as a quadrature formula where the integral is replaces by a 
finite sum over the lattice Г. We are interested in estimating the error 6(f, Г) in terms of 
the number N(KS,T) (ch. (1.5)) of nodes in the quadrature formula (2.14). Of course, 
such an estimate is interesting if we suitably shrink the lattice Г, for example, replacing 
Г by t~lT as t -* oo. 

If Г = Zs, then one has the following best possible estimate as t —» oo: 
8(f,rlZs) < cft~l ^ CfiNiK^t^Z3)}-^. 

Thus, the error becomes much worse if the dimension s increases. This dramatic circum
stance is a principal obstruction for applications of simple quadrature formulas (2.14) 
with Г = Zs in high dimensions. It is remarkable that the error behaves completely differ
ently when the lattice Г in (2.14) is admissible. Our main result concerning quadrature 
formulas can be stated as follows. 

Theorem 2.1. Let Г с Rs be an admissible lattice and let f(X) e V[(KS). Then one has 
the following bounds as | Nm T\ -> oo: 

6(f,T-> • Г) < с | , 1 ( Г ) [ | / Ц м
1 п ' | " ^ |

Г | ^ С М ( Г ) | | / | | М ^ ^ (2.15) 

for q = 1 and 
t - l ' e-l 

6(fT-> • r) < cM(r)ii/iif>/n
|
2

N^/
T| ^ c u n i l / l k , — ^ (2'16) 

for q>l. 
In (2.15) and (2.16) we have used the notation NT = N(T • К*,Г) for the number of 

nodes. The constants in (2.15) and (2.16) depend upon the lattice Г only by means of the 
invariants det Г and Nm Г. 
Remark 2.3. It was proved by Bykovskii [21] that an arbitrary quadrature formula for 
the space V[(K9) with q ^ 2, gives the accuracy no better then N'^lnN)1^ for any 
choice of N > 1 nodes. Thus our bounds for the error are best possible for all q ^ 2. 
There are reasons to expect that bounds (2.15) and (2.16) are best possible for all q ^ 1 
(cf. Sarygin [22]). 

Earlier weaker bounds for the error with Г = Гм were given by Frolov [23] and by 
the author [4, 5]. It should be pointed out that first applications of the lattices Тм to 
construction of quadrature formulas of the type (2.14) were given in [23]. 
Remark 2.4. The high accuracy of the bounds in Theorem 2.2 makes it possible to 
observe an interesting phenomenon: the exponent of the logarithm has a sharp jump 
from the value ^ to s - 1 when the parameter q changes continuously from q > 1 to 
q = l. 
Remark 2.5. We see from (2.15) and (2.16) that the error in the quandrature formula 
(2.14) is almost independent of the dimension s. Quadrature formulas with similar 
properties are known in the numerical analysis. Their construction by the so-called 
method of optimal coefficients (or, in other terms, by the method of good lattice points) 
was initiated by Korobov [24, 25] and by Hlawka [26] (we refer to [12, 25] for details). 
Here a new approach was developed in [27] by I. H. Sloan and in [28] by I. H. Sloan 
and P. J. Kachoyan. 
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It also should be noted that for / e Vl
q(K3) with s > 2, the optimal coefficient method 

gives an accuracy of order N~l(\n N)ls, where N > 1 is the number of nodes. One should 
also keep in mind that finding the nodes in high dimensions by this method is a nontrivial 
matter requiring a large amount of computation. On the other hand, admissible lattices 
in the quadrature formulas (2.14), say, the lattices Тм can be constructed explicitly in 
any dimension s ^ 2. To do this, it is sufficient to take an arbitrary full module M in 
a subfield F of degree s in the maximal real subfield of a cyclotomic field of a suitable 
degree. In this case the nodes in the quadrature formula can easily by described in terms 
of the Gauss sums (cf. [1, Chap. V]) However, in the present paper we shall not consider 
the computational aspects of our results. Nevertheless we note that the comparison of 
all alternative approaches to construction of multi-dimensional quadrature formulas are 
of especial importance for the progress in this field. 

In conclusion, we would like to draw attention to a close relationship between the 
sequences of bounds (1.11), (2.7), (2.15), on one hand, and bounds (1.12), (2.8), (2.16) 
on the other. This relationship has deep reasons which induces the author to collect the 
above results in the same paper. 

§3. Auxiliary results from geometry of numbers. Bounds for sums over lattices 

We recall some well-known facts from geometry of numbers. These facts supplement 
the properties given in Section 1. For all details, we refer to [2, 3]. Let Ах(Г) ^ А2(Г) ^ 
• • • ^ А3(Г) be successive minima of the lattice Г с К * with respect to the Euclidean 
metric |J\T|, X € Rs. In particular, 

Al(r) = ^ ? o , W ^ 
is the length of the shortest vector 71 e Г \ {0}. The vector 71 can be complemented 
to some basis £1 = 71, f2, • • •, 6 of the lattice Г, i.e., Г Э 7 = qi& H Ь q9£a, where 
Q = (qi,..., qs) £ Zs. In addition, 

s 

l7l = |E«i€i|>Ai(r)|Q|. (3.2) 

We have the following relations (cf. [2, Chap. VIII, Theorems V and VI]): 

2* s 

— det Г ^ v9 Л А;(Г) ^ 2s det Г (3.3) 

where v3 is the volume of the unit ball in Ee, and 
1 < A^rjA.+L^P) < л!, j = l , . . . , j , v (3.4) 

where Г* is the lattice dual to Г. Recall that Г* consists of all vectors 7* such that the 
inner product (7*, 7) G Z for each 7 e Г. 

We have the inequality 
AJ(r) ^ s$ NmT > NmT, (3.5) 

which follows from the definitions (1.4), (3.1) and from the inequality between the 
arithmetic and geometric means. More generally, we have the formula 

Nmr = , - * inf X[(U-T), (3.6) 
UfcUm 

14 Алгебра и анализ. 1994. Т. 6. №3. 
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where Um is the group of unimodular points (see (1.2)). Formula (3.6) can be proved 
as follows. Let a point 71 e Г\ {0} belong to a coordinate plane, say, to the plane xx = 0. 
Then Nmr = 0. Let 7! = (0,хи...,х9) and Ut = (t'-1,*""1,... ,t"1) € Um. Then 

inf X{(U • Г) ^ inf Xl(Ut • Г) ^ inf | l / t 7 l | = inf t|7i | = 0. 
Thus (3.6) is valid in this case, since the two sides in (3.6) are equal to zero. 

Now let Nm7 ф 0 for all 7 e Г, and let us consider the following surfaces 
E7 = { X € R J : | N m X | = | N m 7 | } , 7 е Г \ { 0 } . 

The group Um is transitive on each S7 . Thus, for some Щ € Um we have J777 = 
61/2 |Nm7|1/en and \U^\9 = W 2 |Nm 7 | . Therefore (cf. (1.4) and (3.1)), 

inf \\{U-T)^ inf \*(Щ-Г)^ inf \U^\9=s9l2 inf |Nm 7 | = W 2 Nmr. 
t/GUm 1 V J 7€Г\{0>. 1 V 7 ' 7бГ\{0} ' 7 " 7бГ\{0} ' " 
At the same, time we derive from (3.5) 

inf Afttf-Г)^ W 2 NmI\ 
These inequalities prove formula (3.6). 

Lemma 3.1. If Г с R5 & an admissible lattice, then the following assertions are valid: 
L Any hyperplane in Rs given by the equation XJ = a, a € R, contains at most one point 

of the lattice Г. 
2. The dual lattice Г* is also admissible. 
3. There exists a radius r0 = г0(Г) depending upon the lattice Г only by means of the 

invariants detT and NmT swcA that the ball B(r0) '= {X e Rs : \X\ ̂  rQ} contains a 
fundamental set for the lattice Г. 
Proof. 1. Suppose that the hyperplane XJ = a contains two different points 71, 72 £ Г. 
Then the hyperplane x j — 0 contains the nonzero point 73 = 72 -71 € Г. Thus Nm 73 = 0 
and so Nm Г = 0, i.e., the lattice is not admissible. This proves assertion 1. 

2. Suppose that the lattice Г* is not admissible, i.e., NmT* = 0. From (3.6) we 
conclude that \\{U~~X Г*) can be arbitrarily small for of a suitable choice of U'1 e Um. 
Thus, AS(C7~1 . Г*) can be arbitrarily large by (3.3). Hence Xi(U • Г) can be arbitrarily 
small by (3.4), since (U • Г)* = U~l • Г*. Therefore, NmT = 0 by (3.6), i.e., the lattice 
Г is not admissible. Ibis proves assertion 2. 

3. We denote by 71,...,73 &e linearly independent points of Г on which the suc
cessive minima АДГ) are attained, i.e., АДГ) = |7j|, j = 1, . . . ,5. It is obvious that the 
parallelepiped spanned by the vectors 71, . . . 7* contains a fundamental set for the lattice 
Г. At the same time this parallelepiped is contained inside the ball centered at the origin 
and with radius 

г = | 7 l | + . . . + Ы = АДГ) + . . . + А,(Г) ^ s\3(T) ^ s2sdetTX\-s(T), 
where we have used (3.3). Using (3.5) we obtain 

r ^r0= г0(Г) = s2* det T(Nm Y)1^. 
This proves assertion 3. The proof of Lemma 3.1 is completed. 

Now we wish to consider certain sums over lattices. We define the nonnegative function 
H(X\ X e RJ, by setting 

Н(Х) = Н(хи...,х,) = Ц(1 + \х;\)-2а; (3.7) 
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moreover, 
ЩХ) < (i + \x\r2; 

and, in addition, one has the bounds 
H2(X) ^ H{X) 

sup Я ( 7 - Х ) ^ ( 1 4 - г ) 2 в 2 Я ( 7 ) , Тн(7)<оо, 
хев(г) ~ 

(3.8) 

(3.9) 

where B(r) = { X eRs: \X\ ^ г } is a ball and Г с Ra is an arbitrary lattice. 
We consider the following lattice sum: 

Я(Г,Х) = ] Г Я ( 7 - Х ) . (3.10) 

It is obvious that series (3.10) converges and represents a periodic function of X with 
period lattice Г. Choosing the radius r so that the ball B(r) contains a fundamental 
set f(T) for the lattice Г, we derive from (3.9) and (3.10) the following sequence of 
estimates: 

8 и р Я ( Г , Х ) = sup Я ( Г , Х ) = sup Я ( Г , Х ) ^ ) Г sup Я ( 7 - X) 
хеш* хег(г) хев(г) ^хев(г) 

^ ( 1 + г ) 2 * 2 £ я ( 7 ) (3.11) 

Let х(Ж*,Х) be the characteristic function of the cube Ж*. We have 

X(tKs,X)<(l+t)2s2H(X). 
If we take into account the definitions (1.5) and (3.10), we obtain 

N(tKs +Х,Г) ^ (l+t)2s2H(r,X). (3.12) 

Lemma 3.2. IfTeRsisan admissible lattice, then the following assertions are valid: 
1. The sum (3.9) satisfies the bound 

sup Н(Г,Х) ^ Я г , (3.13) 
хек* 

where the constant Яг depends upon the lattice Г only by means of the invariants det Г 
and Nm Г. 

2. The number of points of the lattice Г in the cube tKs + X satisfies the bound 
N(tKs + X,Г) ^ Я г(1 + t)2s, (3.14) 

with the same constant Яг as in (3.13). 
Proof. Choose the radius г in estimate (3.11) to be equal to the radius r0 = г0(Г) from 
assertion 3 of Lemma 3.1. then, taking (3.2), (3.5), and (3.8) into account we continue 
estimates (3.11) as follows: 

sup Я ( Г , Х ) ^ С ( г 0 ) 
хеш* 

i+ £ |7|-
2s 

76Г\{0} 
^ C(r0) 

I—2л 

1 + АГ2'(Г) £ \Q\~2s 

QGZ'\{0} 

= ЯГ . ^C(ro) l + (Nmr)- 2 Y, \Q\' 
L QeZ'\{o) 

This proves bound (3.13). Bound (3.14) follows from (3.12) and (3.13). The proof of 
Lemma 3.2 is completed. 
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We consider the set of integer vectors with zero trace (cf. (1.1)) 
L = {QeZa:TrQ = 0}. (3.15) 

The set (3.15) forms the (s - l)-dimensional lattice lying in the hyperplane С given by 
C = {Y eR9 :TTY = 0} . (3.16) 

For any Y = (y i , . . . , ys) e Re, we define the vector 2 y by setting 

2 y = (2y i , . . . ,2y-) . (3.17) 
It is obvious that 2 y e Um for Y e С 

We shall need the following elementary inequality. 

Lemma 3.3. IfYeC and v > 0, then 

#(i / -<2" y) ^min{l;i/22-lyl}, (3.18) 
where #(•) is given by (3.7). 

Proof. We have the inequality 
max w > 1 |У| . (3.19) 

Indeed, let Y ф 0 and, to be definite, suppose that the coordinates yi , . . . yn are positive 
and yn+i, • > Уа are nonpositive. From the condition Tr Y = 0 we find that 

J=l i = l 

whence 

2* max у, > ]^|ад| ^ felwI'V = Î K 

Inequality (3.19) is proved. 

From the definition (3.7) we obtain 

H(X) < П ™ 1 1 ^ ; W 2 ' } ^ nrin{l;( max Ы)~28} (3.20) 
i=i 1 0 * ' 

for any ЛГ e Rs. Now with the help of estimates (3.19) and (3.20) the left side of (3.18) 
can be bounded as follows: 

tf(i/-72~y) ^min{l;i/2(max 22*")} = min{l;i/222amaXl<'<' » } 

^min{l.;i/22" ,y |}. 
This proves Lemma 3.3. 

We consider the following sum over the lattice LcC (cf. (3.15), (3.16)): 

F L ( P ) B j ; f f ( 2 - 9 . p - 1 ) , (3.21) 

where P € E*. 

file:///xj/y28}
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Lemma 3.4. The series (3.21) converges for all P e Es and satisfies the bound 

HL{P) < cs[ln(2+ iNmPI)] '-1 . (3.22) 

Proof. For P = (pi , . . . ,p s) € E% we set 

| P i | = |NmP| i2-w; 
where Y = (yi , . . . y9) 6 £. In this notation we have 

H(2~Q -P-1) = # ( | N m P | h y - Q ) ^ min{l; |NmP|22-lQ-y l} (3.23) 

by inequality (3.18). 
Bound (3.23) shows that the summands in (3.21) are exponentially decreasing as 

Q —• oo along the Ьурефкпе £. Hence the series (3.21) converges. 
To prove (3.22) we set 

p = log2(2 + |NmP|)1 0 0 = 1001og2(2 + |NmP|) 

and split the sum (3.21) into a sum over Q e L in the ball \Q — Y\<p and a sum over 
Q e L satisfying \Q - Y\ ^ />. Using (3.23), we replace H(2~Q • P" 1 ) by 1 in the first 
sum and by | NmP | 2 2~^~ y ' in the second. As a result, we obtain 

HL(P)^ J2 l + |NmP|2 J2 2~IQ"Y| 

\Q-Y\<P \Q-Y\>P 

< ^ + | N m P | » 2 - * ' £ 2-*W-*l< c p - + c ' - i ^ L , 

<C,[ln(2+|NmP|)]s-1. 
rIbis completes the proof of Lemma 3.4. 

§4. Auxiliary analytic results 
о 

In this section we present necessary facts about the functional spaces Vl
q(K9) and 

give the bounds for certain integrals that will be needed in our further studies. 
The facts about the functional spaces are collected in the following 

Lemma 4.1. Let f G Vl
q(Ks) and let \\f\\hq be the norm (2.13) and D be the differential 

operator (2.12). Then the following asertions are valid: 
L For I ^ 1 and q ^ 1, ой the Junctions Djf(X), j = 0 , 1 , . . . , / - 1, are essentially 

continuous (Le., these functions can be corrected on a set of measure zero so as to be 
continuous), and one has the bounds 

ess sup \D*f(X)\ < ||/|| l f f, j = 0 , 1 , . . . , / - 1. (4.1) 
X€K* 

(Thus, without loss of generality, we assume below that the functions Djf(X), j = 
0 , 1 , . . . , / - 1 are continuous). 

2. For I > 1 and q^l, one has the inequality 
\f(X) - f(X')\ ^ c9\\f\\it,\X - X% where X,X' e R'. (4.2) 

3. For I = 1 and q > 1, one has the inequality 

\f(X) - f(X')\ ^ c. l f | | / | | l i f |X - X'\*r, where X,X' G R*. (4.3) 
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4. For / = 5 = 1, the Junction f(X) has the bounded variation УыНк/ in the sense 
of Hardy and Krause and the bounded variation Vary f in the sense of Vitali, and the 
following relations are valid: 

VaxH^/ = Varv/ = | | / | | i ,i . (4.4) 
Proof. To simplify the notation, we shall give the proof only in the dimension 2. Since 

о 
the function / e Vq(K8) is compactly supported, we have (after a correction of / on a 
set of measure zero) the following formulas: 

X l X2 

D>f(Xl,x2) = J J D'+Hu^dt, dt2 (4.5) 
—oo —oo 

for j = 0 , 1 , . . . , / - 1. From (4.5) we obtain the formulas 
X\ %i X\ *2 *\ X2 

Djf(xl,x2)-D*f(x'ux'2)=n J + J j + J j\D*lf(hM)dtidt2 (4.6) 

for k = 0 , 1 , . . . / - 1 and, in addition, 
max{|a:i — x[\; \x2 — x'2\} ^ \X — X'\. 

1. For Z ^ 1 and О 1» Olf e Lq(Rs) С Zq(K*). Using formulas (4.5) and (4.6) for 
j = / - 1 , . . . , 1,0, we verify successively that the functions D*f(X),j = / — 1 , . . . , 1,0, 
are continuous and bounds (4.1) are valid. 

2. For / > 1 and q > 1, the function Df(X) is continuous by assertion 1. Hence 
inequality (4.2) follows at once from formula (4.6) with j = 0. 

3. For / > 1 and q ^ 1, Df £ Lq(K
s). Hence inequality (4.3) follows from formula 

(4.6) with j = 0 by means of Holder's inequality. 
4. By definition (cf. [12, Chapter 2, Section 5, 13]), the difference of the variations 

VarnA- / and Varv / depends upon the behaviour of the function / only on the boundary 
of the unit cube. But the function / is equal to zero on the boundary. This proves the 
first equality in (4.4). The second equality in (4.4) is a well known formula (cf. [12,13]) 
expressing the variation Varv / in terms of the Li-norm of the mixed derivative Df. 

The proof of Lemma 4.1 is completed. 

Now we wish to estimate certain integrals. First we introduce the following functions. 
Let u(t) = Щ*|), t e R1 be an even function of the class C°°; moreover, let w(t) and 
all the derivatives u>W(t) satisfy the bounds 

„<*>(*) = 0(|*Гв), |<|-oo, 4 = 0,1, . . . (4.7) 
with arbitrary a > 0. We set 

oo 

n't(T) = T* sup |«<*>(т*)|, П2(т) = r* / |W<*>(ri)| dt, 
l<t<oo J 

1 
where r > 0 and k = 0,1, One can easily check the bounds 

П'(г) < <*,a(l + r)-<\ Q'l(r) < ckiark^(l + r ) -« 
with arbitrary a > 0. 
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Let r)(t) = rj(\t\)f t e R1, be an even function of the class C°°; moreover, rj(t) = 0 for 
0 ^ | t | ^ l and rj(t) = 1 for \t\ ^ 2. We set 

77_i = sup \rj(t)l щ = sup \t~xri(t)l 
l<t<oo l < t < o o 
OO 

Vk = J\(t-l4(t))ik)\dt < oo, к = 1,2,. 
l 

Let /(*), * G R \ be a function of the class C°°; moreover, let f(t) and all derivatives 
/<*> belong to ^ ( R 1 ) . We set 

oo 

/*= J \(f(tMt))W\dt<oo, * = 0,1,... 
— oo 

We consider the following integrals for £ e R1 and r > 0: 
oo 

Jf(r, 0 = / Ae-2**'/(*M*M^) (4-8) 

and 
oo oo 

7( r , 0 = / Ле-а**'«'уЧ(*)ы(т*) = -2i [ di*™2*^ Tj(t)u(rt). (4.9) 

Lemma 4.2. For all a > 0 and /? > 0, one ЙОУ f/ie bounds 
\Jf(r, 0 | < са,Д1 + т ) - ( 1 + |£ |Г", (4.10) 

| J ( r , O I < c a , ^ l + r ) - a ( l + |e|)-^. (4.11) 

Proof. Let us prove bound (4.10). From (4.8) we find directly that 

\Jf(r,01 ^ 2/0ni(r) < c(l + т)~а. (4.12) 
Integrating in (4.8) 4m times by parts, we find that 

У 4m 
(2тг04т J/(r , 0 = / Ae-2**' £ ^ т ( / ( 0 ^ ( 0 ) ( 4 т - Я ^ 0 ) ( ^ ) , 

-oo i=° 

where 6J are binomial coefficients. Therefore, we have the following estimate 
4m 

| 2 < | 4 w | J / ( r , O K 2 ^ 6 i m / 4 m - , n ; . ( r ) < C ( l + r ) - a (4.13) 

Summing inequalities (4.12) and (4.13), we obtain (4.10). 
Now we prove bound (4.11). Integrating in (4.9) 4m > 0 times by parts, we obtain 

/

4m 

die'2"* £ &иг\(*))< 4 т - '>г^)(г<) . 
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Therefore, we have the following estimate: 
4 m - l 

|2тг£|4т|/(т,01 ^ 2 £ %тЩтчЩт) + ^oil'Ur) ^ c(l + r4—x)(l + T)7"' 
i=o 

*£C(l + r)-° , (4.14) 
where a = a ' -4m + l > 0 is arbitrary, since the number a' > 0 can be chosen arbitrarily. 

Let т ^ 1. From (4.9) we find directly that 
|/(r, 01 < »/ofio (r) < cr -^ l + г)"» ^ c(l + r)"a . (4.15) 

Summing inequalitions (4.14) and (4.15), we obtain bound (4.11) for r ^ 1. 
Let 0 < т < 1. We prove the following bound: 

| / ( r ,OI<C (4.16) 
for f e R1 and r G (0,1). Since l(r,0) = 0 and / (т , -£) = - 7 ( т , 0 , it is sufficient to 
prove (4.16) only for £ > 0. 

Let 0 < £ ̂  r < 1. We have 

^ 4тгг/_1^,(г) ^ с(т~1 ^ с 

9 т /2 

|/(r, OK 2^,/eftp^W(r<) 
1 

If r < f < 1, then we have 
oo 

^ • « - / ^ ( S J K * ) - / + /"'•+*• 
0 0 9тг/2 

The first integral can be estimated as follows: 

9тг/2 

2rr£ 

We note that rj^-щ) = 1 in the second integral. The integration by parts gives 

9тг/2 

Therefore, we have the following estimate: 

1̂ .01 <«i(^)+nr(^)^. 
Finally, let 1 ̂  f. Integrating by parts in the original integral (4.9), we obtain 

oo 

m(I(r,() = /Acoe2<t{(r1^ (* )) ( 1 )a;(rt) + t-1iy(*)r(«;(1)(r<)}. 
о 

Therefore, we have the following estimate: 
*№,0I < чМт) + чоМ{(т) ^ с 

This proves bound (4.16). Summing inequalities (4.14) and (4.16), we obtain (4.11) for 
0 < r < 1. Thus, (4.11) is proved for all r > 0. This completes the proof of Lemma 4.2. 
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§5. Dyadic decompositions of periodic functions. The Littlewood{Paley theory 

First we recall some auxiliary facts. Let Lq[T]9 q ^ 1, be the £g-space of periodic 
functions (p(X)9 X e Rs, with period lattice Г с Rs: y\x + 7) = <p(X), 7 e Г. The norm 
in Lq[T] is given by 

IMIt = Ы\ья[Г) = [(detr)-1 J \<p(X)\'dx]\ (5.1) 
F(T) 

where F(T) is a fundamental set for Г (cf. Section 1). Let С°°[Г] be the space of 
infinitely diffrentiable periodic functions on Rs with period lattice Г с Rs. 

For any (p £ Lq[T], we consider the Fourier series 

<p(X) = £ £(7*)ехр(2тг;<7*,*),), (5.2) 

where Г* is the lattice dual to Г (cf. Sect. 3) and the Fourier coefficients £(7*) are 
given by the formula 

£(7*) = (de t r ) - 1 / ip(X)exp(-27ri(j*,X))dX. (5.3) 

The series (5.2) converges in the norm (5.1). It is obvious that for <p e C°°[T]9 the series 
(5.2) converges absolutely and uniformly i n l G Rs. 

Further, we shall need the Poisson summation formula for an arbitrary lattice Г с Rs 

(cf. Stein and Weiss [29, Chap. VII, Sect. 2]): 
de t r £ / ( 7 - * ) = £ /(7*)ехр(27гг<7*,Х)), (5.4) 

where 
/(У) = / f(X)exp(27ri{Y,X))dX (5.5) 

is the Fourier transform of f(X), X e R9. Formula (5.4) holds for functions f{X) 
decreasing together with all their partial derivatives faster then \X\~a for arbitrary a > 0. 
We note that in (5.4) the sum over 7 e Г represents a periodic function of the class 
С°°[Г] and the sum over 7* e Г* gives the Fourier series (5.2) for this function. 

Let L°q[T] С Lq[T] and С0°°[Г] с С°°[Г] be subspaces consisting of all functions 
(p e Lq[T] and, respectively, tp e C°°[T] with Fourier coefficients £(7*) satistying the 
following additional conditions: 

£(7*) = 0 if Nm7* = 0, 7* еГ*. (5.6) 
Note that if the period lattice Г is admissible, then the dual lattice Г* is also admissible 
(cf. Lemma 3.1) and 7* = 0 is a unique point of Г* with N1117* = 0. As a result, the 
additional conditions (5.6) are reduced to a single condition 

£(0)= / <p(X)dX = 0. (5.7) 

;г(Г) 
Diadic decompositions of periodic functions can be described as follows. We split Rs 

into the orthogonal sum 

Rs Э X = (xi,x2,...,xa) = (xx,x), xi GR1, x = ( s 2 , . . . , s e ) ё R*"1; 
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moreover, 
(X, Y) = х\у\ + (х,у), NmX = a;iNmi. 

Let m(t), t e R\ be a non negative function of the class C°° vanishing in neighbor
hoods of t = 0 and t = ±00. We set 

8 

М(Х) = М(*) = П т ( * Д (5.9) 

so as a function of X = (х ь х) М(Л") does not depend on the coordinate х ь We set 
a 

MQ(X) = M(2~Q X) = Д т ( 2 - * * Д (5.10) 
i=i 

where Q = (qu... ,qs) e L (cf. (3.15), (3.16)). In the notation (5.8) Q = (quq\ where 
q € Z s _ 1 is arbitrary and q\ = -(g2 H h ?Д 

We introduce the following multipliers: 
(OTQC^HT*) = M Q ( 7 * ) £ ( 7 * ) , (5.11) 

where £(7*) and (971Q(^)^(7*) are the Fourier coefficients (5.3) of the functions <p(X) 
and MQ<P(X), respectively (cf. [30, Sect. 1.5]). The multipliers 9JIQ are linear operators 
in L°q[T] defined at least on the dense subset С§°[Г] с L°q[T]. 

Suppose that the functions (5.10) satisfy the relation 

E MQW =l (5-12) 
for all X e Rs with Nm ф 0. Then, obviously, we have 

E an,* = 9 (5.13) 

for any function ip e C§°[T]. Similarly, if the functions (5.10) satisfy the relation 
J2M2

Q(X) = 1 (5.14) 
QeL 

for all X e Rs with Nm x ^ 0, then we have 
E P ^ l G = IMI2 (5.15) 
QeL 

for any function tp e L^T]. It is obvious that (5.15) follows from Plancherel's formula 
for the L2-norm (5.1). 

Let us give examples of functions (5.9) and (5.10) satisfying relations (5.12) and 
(5.14). We define an even nonnegative function of t e R1 by the formula 

0 f o r 0 < | t | < l , 
/?(<) for 1 ^ \t\ *S 2, 

a(t) = { 1 for \t\ = 2, (5.16) 
1 - / 3 ( | ) for 2 < |*| < 4, 

I 0 for \t\ > 4, 
where 

P(t) = exp ^SK—[f-O 
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It is easy to check that a(t) and a%(t) are of the class C°° and vanish in neighbourhoods 
of t = 0 and t = ±00 and, in addition, we have the relation 

g = —00 

for all* ^ 0. Now we see that the functions (5.10) with m(t) = a(t) and with m(t) = 
02(1) satisfy relations (5.12), and (5.14), respectively. 

From the dyadic decomposition (5.13) we obtain immediatly the following result. 

Lemma 5.1. Suppose that the functions (5.10) satisfy relation (5.12). Then we have the 
inequality 

sup|y>(*)l< £sup|OTQ<^(X)| 
x яеь х 

for any function ip e С£°[Г]. 
In order to formulate a similar result for the £g-norms, we introduse the following 

function: 

*HX)} = (Y,№QV(X)\2)7 (5.17) 

for tp G Lq[T]. 

Lemma 5.2. Suppose that the functions (5.10) satisfy relation (5.14) qnd q>\. Then for 
any ip € L°q[T], the function Ф[<р] е Lq[T] and we have the inequality 

IMI, < <4,.II*MII, (5-18) 
with the constant independent of the lattice Г. 

Lemma 5.2 represents a modification of one of the main results in the Littlewood-
Paley theory for the multiple Fourier series. See, for example, Nikol'skii [30], Sect. 1.5 
where inequalities of the type (5.18) are proved for the case of the period lattice Г = Z*. 
For the sake of completeness, we give a sketch of the proof of inequalities (5.18) for 
arbitrary period lattices. Here we follow the approach to the Littlewood-Paley theory 
developed by Stein, see [31, Chap. IV]. 
Proof of Lemma 5.2 can be given in three stages. 
Step 1. Well-known arguments (cf. [31, p. 105]) show that it is sufficient to prove the 
following inequality: 

\\*Ы\\ч^СчААч> !<<?<«>, (5.19) 
with the constant independent of the lattice Г. It is worth noting that relation (5.14) in 
Lemma 5.2 is needed only at this point. 
Step 2. Sinse the operator tp -* Ф[у>] (see (5.17)) is nonlinear, it is more convenient to 
deal with multipliers. The corresponding construction can be given as follows (cf. [31, 
Chap. IV, Sect. 5]). Let r*(£) = sign sin 2*+1тг*, t e R1, к = 0 , 1 , . . . be the Rademacher 
functions. We consider the following function of x € R1 depending on the parameter 
t G R1: 

00 00 

»»«(*) = Y, r2k(t)™(2-kx) + ] T rafc+i (t)m(2*x), (5.20) 
*=0 Jt=0 
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where т(х), х е R1, is the function from (5.9) and (5.10). From the definition of m(x) 
it is clear that for any\x, at most finitely (and independent of x) many terms in the sums 
(5.20) can be nonzero. Moreover, we also easily see that 

\ d \ с 

where the constant is independent of t. 
Now we consider the following function of X = (xu... ,xs) e E3 depending on the 

parameter T = (и,..Л3) eRs: 
3 

*Т(Х) = 1[тфЛ (5.22) 

and we introduce the multipliers Ф^, T e Rs, in the space Lq[T] by setting 

( ^ Г ( 7 > Ф т ( 7 * Ж 7 * ) , 7*€Г* . (5.23) 
(cf. (5.11)). 

Well-known arguments (cf. [31, p. 105-108]) show that inequality (5.19) holds if the 
following bound is valid 

I I ^ H f < c f l . | | ^ | | g , V 6 l f [ r ] , l < g < o o , (5.24) 
with the constant independent of Г с Rs and T e Rs. 

Step 3. In order to prove bound (5.24) we introduce nonperiodic multipliers Фт, T e R3, 
in the space Lq(R3) by setting 

(*т/Г(У) = Ф т 0 0 / ( П Y£R\ fe Lq(R
s) П L2(Rs), (5.25) 

where f(Y) and ( Ф т / ) ~ 0 0 are the Fourier transforms (5.5) of the functions f(X) and 
VTf(X), respectively (see [31, Chap. IV, Sect. 3 for details]). 

Using the definition (5.22) and estimates (5.21), from the Marcinkiewicz multiplier 
theorem (see [31, Chap. IV, Sect. 6, Theorem 6']) we derive the following bound: 

ll*r/| |L f <*) < cg,e||/jUf (R.), / € Lq(R3) П L2(R% К ж oo, (5.26) 
with the constant independent of T e Rs. 

Now we are interested in the relationship between the periodic and nonperiodic 
multipliers (5.23) and (5.25). A well-known theorem by Stein and Weiss (see [29, 
Chap. VII, Theorem 3.8]) on periodization of multipliers says that bound (5.26) implies 
(5.24), and moreover, with the same constant. More precisely, here we use a simple 
modification of this theorem adapted for the space L°q[T]. 

Thus, bound (5.24) is proved. This completes the proof of Lemma 5.2. 
A more detailed discussion of the Littlewood-Paley theory in the context of number 

theory will be given on a suitable occasion. 

§6. Bounds for sums over admissible lattices 

In this section we study the following sum: 

Wl(T,F,X)= J2 ( N m n ~ 4 P ~ l -7*)ехр(2тг*(7*,Х)), (6.1) 
7*ег«\{о} 
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where the lattice Г* is dual to a given lattice Г, / > 1 is an integer, P = (pi , . . . ,ps) € Ea, 
and the function ЩХ), X e R*, is given by the relation 

where u(t) = Щ*|), t e R1, is an even function of the class C°° satisfying bounds (4.7). 
Hence 

ЩХ) = 0(\X\~a) (6.3) 
with arbitrary a > 0. 

Lemma 6.1. If Г is an admissible lattice, then the series (6.1) converges absolutely and 
wl(r,pr)ecs°[r). (6.4) 

Proof. Since the lattice Г* is also admissible (cf. Lemma 3.1), one can estimate the 
denominator in (6.1) from below: |(Nm 7*)'| ^ (Nm Г*)* > 0. This estimate, together with 
bound (6.3) for the function (6.2), provides the absolute convergence of the series (6.1). 
Moreover, the periodic function (6.1) belongs to the class С°°[Г]. Since the term with 
7* = 0 is absent in the sum (6.1), we see that the condition (5.7) defining the subspace 
Со°[Г] for admissible lattices is satisfied. This proves (6.4). The proof is completed. 

We wish to evaluate the multipliers 9JIQ, Q e L, given by (5.11) on the periodic 
functions (6.1). 

Lemma 6.2. If Г is an admissible lattice, then for all Q e L we have the bounds 
sup\<mQWl\(r,P,X)\ < С , ( Г ) Я ( Р - 1 • 2-S), (6.5) 
x 

where #(•) is given by (3.7). The constant in (6.5) depends upon the lattice Г only by 
means of the invariants det Г and Nm Г. 
Proof. From the definitions (5.10) and (5.11) we obtain 

mQW\T,P,X) = J2 (Nm 7 *) - / n(p- 1 . 7 * ) M ( 2 - g .7*)ехр(2тгг(7*,Х)). (6.6) 
7*ег*\{о> 

In particular, 

m0Wl(T,P,X) = Yl (Nm 7 *) - / a (p - 1 .7*)М(7*)ехр(2т™(7*,Х)). (6.7) 
7*er*\{o) 

Comparing (6.6) and (6.7) we find that 
WlQWl(T,P,X) = 9Jl0Wl(2Q T,2-Q P,2Q • X). (6.8) 

Since the latticies Г and 2Q • Г have the same invariants det Г and NmT, we see from 
(6.8) that it is sufficient to prove Lemma 6.2 only for Q = 0. 

Let us prove bound (6.5) for Q = 0. We wish to apply the Poisson summation formula 
(5.4) to the series (6.7). However, we can not do this directly because of the singularity 
of the factor (Nm X)"1 at x\ = 0. In order to overcome this difficulty, we shall replace 
the singular function in the sum (6.7) by a smooth one with the same values at the points 
7* € Г*. To be definite, we suppose, in accordance with the example (5.16), that the 
function m(t) in (5.3)-(5.15) satisfies the conditions: m(i) = 0 for |*| < 1 and for |*| ̂  4. 
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Let r](t) = rj(\t\), t e R1 be an even function of the class C°°; moreover, let r)(t) = 0 
for 0 ^ |*| ^ 1 and 77(f) = 1 for |*| ^ 2. We extend this function o n I = (xux) e Rs 

by setting r)(X) = rj(xi), i.e., r](X) does not depend on x e R3'1: It is easy to check the 
relation 

M(X)rj(aX) = M{X), where a = 229-\^тТ)~\ (6.9) 
for all X eRs with | NmX| ^ NmT. Indeed, the parameter a in (6.9) is chosen so that 
either r](aX) = 1 or M(X) = 0 for all X in the indeicated region. 

Taking (6.9) into account, we represent the series (6.1) in the following form: 
VJloWl(r,P,X)= £ Ж'(Р,7>хр(27гг(7%Х)), (6.10) 

7*€Г* 

where Wl(P, Y) is a smooth function given by the formula 
W\P, Y) = (Nm Y)-li1{aY)Q.{p-1 • Y)M(Y) 

Now we can apply the Poisson summation formula (5.4) to the series (6.10). As a 
result, we get 

mw'(r,p,x) = £ w\p^ - x\ (6.12) 

where the functions W\P, Y) in (6.10) and Wl(P, X) in (6.12) are related by the Fourier 
transform (5.5). Using (6.11) we find that 

\¥\Р,Х) = 1[и,'(\р1\-\х1), (6.13) 
i = i 

where co-factors can be described as follows: 
If j — 1 and I = 1, then 

00 

W\(T,0= I dte-2wi*t-T1(at)uj(Tt) = I(aT,a-10- (6.14) 
— OO 

Note that here we have used formula (4.9). 
If j = 1 and I > 1, then 

OO 

f ! ( r , « = / dte-WjjrtatMrt) = al-xJh{ar,a-H)- (6.15) 
— OO 

Here we have used formula (4.8) with fi(t) = t~lri(t). 
If j = 2 , . . . , s and / ^ 1, then 

OO 

" J f r O = / ^ e - 2 ^ i m ( t ) W ( r < ) = J / 2 ( T , 0 . (6-16) 
— OO 

Here we have used formula (4.8) with f2(t) = t~lm(t). 
Let us estimate the co-factors (6.14)-(6.16) by means of Lemma 4.2. As a result, for 

all j = 1 , . . . s and / ^ 1 we obtain the bounds 
И^окс^а+тг-а + к!)-" (6.i?) 
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with any a > 0 and (3 > 0. If here we choose a = $ = 2s and substitute (6.17) in the 
product (6.13), then we get 

\Wl(P,X)\ < C1H(P-1)H(X), (6.18) 
where #(•) is given by (3.7). From (6.18) we obtain the following bound for the series 
(6.12): 

sup\Wl0Wl(r,P,X)\ ^ clH(P~l)supH(T,X), (6.19) 
X X 

where H(T,X) is given by (3.10). Now bound (6.5) for Q = 0 follows from (6.19) with 
the help of Lemma 3.2. This completes the proof of Lemma 6.2. 

From Lemma 6.2 we can derive very sharp bounds for the norms of the sum (6.1). 
We set 

V f(I \P) = sup И Г , Р Д ) | , (6.20) 

v f ' ( i \p) = 

where q > 0 is a real number. 

(de t r ) - 1 / \Wl(T,P,X)\qdX (6.21) 

(̂n 

Lemma 6.3. Let Г с Rs be an admissible lattice. Then for all P G Es, we have the bounds 
V\T, P) < с'(Г)[1п(2 + | Nm PI)]5"1, (6.22) 

Vj(T,P) < С;(Г)рп(2 + i N m P I ) ] ^ . ' (6.23) 
The constants in (6.22) and (6.23) depend upon the lattice Г only by means of the invariants 
det r and Nml\ 

Proof. Let us prove bound (6.22). Assume that the functions (5.9), (5.10) satisfy relation 
(5.12) and let WIQ, Q e L be the corresponding multipliers (5.11). Using Lemmas 3.4, 
5.1, 6.1, and 6.2 we obtain the following inequalities for the norm (6.20): 

Vl(T,P) < J2 sup|OTgW'(I\P,X)| < с'(Г) ]Г Н(Р-Л • 2-*)' 
QeL x QeL 

*$С'(Г)[1п(2 + | N m P | ) r \ 
where the constants depend upon the lattice Г only by means of the invariants det Г and 
Nm Г. This proves bound (6.22). 

Let us prove bound (6.23). Assume that the functions (5.9), (5.10) satisfy relation 
(5.14) and let 9JIQ, Q e L, be the corresponding multipliers (5.11). We evaluate the 
function (5.17) for ip(X) = И^(Г,Р,Х). Using Lemmas 3.4, 6.2, and the second bound 
in (3.8), we obtain the following inequalities: 

Ф[И^'(Г,Р,Х)] = fj2 \шдшЧг,р,х)\2У 

< (с'(Г) £ E\P-^ . 2 - 9 ) ) * < (с'(Г) £ H(P-l-2-V))* 
Q€L QeL 

^ С ' ( Г ) [ 1 п ( 2 + ^ т Р | ) ] ^ , (6.24) 
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where the constants depend upon the lattice Г only by means of the invariants det Г and 
NmT. 

If q > 1, then bound (6.23) follows from (6.24) with the help of Lemma 5.2. It 
remains to note that the quantity || • ||g is a nondecreasing function of q > 0. This proves 
bound (6.23) for all q > 0. 

§7. Proof of Theorem 1.1 

First we give general bounds for the number of-lattice points inside an arbitrary 
compact body. We recall the following definition (cf. [5]): given a compact body О and 
a number r > 0, we say that the compact bodies Of are a r-coapproximation of О if 
0~ С О С Of and the points of the boundaries dOf are at a distance ^ r from the 
boundary DO. 

Let x(£) = x(£»-X") denote the characteristic function of a set £ С Rs and let 
x(£) = х(£,У) denote the Fourier transform (5.5) of x(£)- К £ is the empty set, 
then we take x(£) = x(£) = 0. Fix a nonnegative function G(X), X e Rs, of the 
class C°°, with a support inside the ball \X\ ̂  1 and assume that JRs G(X)dx = 1. 
We set Gr{X) = T~SG(T~1X),T > 0. Taking into account that the Fourier transform 
GT(Y) = G(TY\ we obtain the estimate 

\Gr(Y)\<ca(l + r\Y\)-a (7.1) 

for any a > 0. 
We consider the convolutions of the functions x(@f,X) and GT(X): 

(Gr *X(0?))(X) = У dFGr(X - Y)x(Of,Y). (7.2) 

It is obvious that the nonnegative functions (7.2) are of the class C°° and are compactly 
supported in r-neighborhoods of the bodies Of, respectively. From the definition of 
r-coapproximation we obtain the inequalities 

(Gr * x(0;))(X) <: x(0,X) <: (Gr * x(Of)\X). (7.3) 
Replacing X by 7 - X in (7.3) and summing these inequalities over 7 G Г, we find 

that 
N~(X)^N(0 + X,r)^Nf(X), (7.4) 

where 
N±(X) = £ ( G r * x(0?))(7 " X). (7.5) 

Here we have used formula (1.5). 
We can apply the Poisson summation formula (5.4) to the series (7.5) (unlike the 

series (1.5) for N(0 + Х,Г)), which gives 

N^X)=V-^ + Rf(X), . (7.6) 

where 
i?±(X) = (detr)-1 £ x(Ot,-f')Grb')exp(2ni{j\X)). (7.7) 

7*er«\{o} 

Note that estimate (7.1) with a > s ensures the convergence of the series (7.7) over 
т * е Г ' \ {о}. 



CONSTRUCTIONS OF UNIFORM DISTRIBUTIONS . . . 225 

Comparing relations (7.4)-(7.7) with the definitions (1.7), (1.9), (1.10) of the remain
der terms R(0 + Х,Г), г(0,Г), rq{0,T\ we obtain (cf. [5, Lemma 3.3]) the following. 

Lemma 7.1. Let a compact body О С R3 and a lattice Г с R3 be given. Then for any 
r-coapproximation Of of О we have the bounds 

\R{0 + X,Г)| < У О Ш ^ г ° Ю г " + |ДЛ*)1 + l # ( * ) l , (7-8) 

г(0,Г) ̂  voWr-^°r + s u p {]R-{x)l + |л+(Д-)|), (7.9) 

r , (0 ,Г) ^ У 0 1 ^ ~ г ° Ш г " + H^(0II , + ||Д+(-)||„ (7.10) 
where \\ • \\q is the norm (5.1). 

Now we can prove Theorem 1.1. Let Г с R3 be an admissible lattice. If Nm T = 0, 
then the parallelepiped T • K3 + X has a dimension less than s and is entirely contained 
in a hyperplane given by the equation XJ = a. By assertion 1 of Lemma 3.1, we have 
0 ^ N(T • K3 + X, Г) ^ 1. Thus Theorem 1.1 holds for T with NmT = 0. 

If T G Es, then without loss of generality we can assume that T = tl = (£,... ,t), 
t > 0. Indeed, for any T G E3 we have T = til • [7 where f > 0 and C/ € Um (cf. 
(1.2), (1.3)). From (1.6)-(1.8) we obtain the following relations for the norms (1.9) and 
(1.10): 

r(T • К3, Г) = r(tK\ U~l • Г), rq(T • Ka, Г) - rg(*Ke, С/"1 • Г)., 
It remains to note that the latticies Г and U~l • Г, U G Um, have the same invariants 
de t r and Nm.T. 

If T = £11 and 0 ^ t ^ 10, then Theorem 1.1 holds by assertion 2 of Lemma 3.2. 
Thus, in proving we shall assume that T = tU and t > 10. 

We make use of Lemma 7.1, taking 
0 = tK3, Of = {t±T)K3, r = t-10ls. (7.11) 

From (7.11) we obtain 
0 < vol Of - vol 0~ = (t + T)S -(t- T)S < Cst

s-\ < Cst-
WOs. (7.12) 

The Fourier transform (5.5) of the characteristic function х(Ж%Х") can be easily com
puted: 

*(«*, Y) = J] 7Г- • (7'13) 

Further, we assume that the function GT(X) in (7.2) is given by the formula 
3 

Ст(Х)=-т-1[д(т-1хЛ (7.14) 

where g(t) — g(\t\), t G R \ is a nonnegative even function of class C'°° with a support 
inside the segment [ - £ ; £ ] and satisfying the condition J^° g(t)dt = 1. 

If we substitute (7.13) and (7.14) in (7.7), we can express the series (7.7) in terms 
of the series (6.1) with 1 = 1, P = т'Ч = ( т~ \ . . . ,т~1\ П(Х) = G{X). We find that 

de t r Д ? ( Х ) = ( — ) * ^ ± W 1 ( r , r - 1 I , X + Z>), (7.15) 
>=i 

15 Алгебра и анализ. 1994. Т. 6. № 3. 
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where 2Ч vectors Z} G R" are independent of X. An explicit description of vectors Zj 
and an arangement of signs in (7.15) is not needed for us. 

Using the norms (6.20) and (6.21) we derive from formula (7.15) the following 
bounds: 

(let Г sup|i?±(X)| ^ 7r-sV\T,T-lK), (7.16) 
X 

c l e t r H B ^ O I I g ^ T r - V ^ r ^ - 1 ! ) (7.17) 
where || • \\q is the norm (5.3). 

Substituting (7.12), (7.16), and (7.17) in (7.9) and (7.10), we obtain the bounds 
dot Г г(Ж% Г) < cst~100s + 7r~sVl (Г, t1003l), 

det Г rq(tK3, Г) < саГ1003 + *~9Vq\T, tWOsl). 
Now the reference to Lemma 6.3 completes the proof of Theorem 1.1. 

§8. Proof of Theorem 2.1 
о 

Let Г be an admissible lattice and let / G V^(KS) be normalized by the condition 
||/||/,f/ = 1. For / = q = 1, Theorem 2.1 follows directly from Corollary 2.1 and from 
assertion 4 of Lemma 4.1. Thus, we can assume further that lq > 1. 

Without loss of generality, we can assume also that T = tU = (t,..., t), t > 0. Indeed, 
for any T G Es we have T = tK-U, where t > 0 and U G Um (cf. (1.2), (1.3)). Therefore 
6(f,T~l -Г) = 6(f,f-lU-1 -Г). It remains to note that the lattices Г and U~l -Г, U G Um, 
have the same invariants det Г and NmT. Thus, in proving we shall assume that T — til, 
t —> oo. 

Let Gr(X), X eRs, т > 0, be the function (7.14). We consider the convolution 

/r(-Y) = (GT * f)(X) = j GT(X - Y)f(Y) dY. (8.1) 

It is obvious that the function (8.1) is of the class C°° and is compactly supported in 
the cube K£ = (1 + r)Ks; moreover, we have 

j fT(X)dX = Jf(X)dX. (8.2) 
к*г к* 

Let us consider the following quadrature formula for the function (8.1): 

/ 
/r(-Y)rfX = d e t r ^ / r ( 7 ) + *( / r , r ) . (8.3) 

76Г 

Comparing (8.3) with (2.14) and taking (8.2) into account, we obtain the formula 
«(/,Г) = *(/Г,Г) + ДГ(/ ,Г), (8.4) 

where 

DT(f, Г) = - det Г ^ [ / ( 7 ) - /.(7)] = - det Г W G r ( 7 - Y)[f(j) - / (F)] dY. (8.5) 
1€Г TrerZ 
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Let us estimate the sum (8.5). Since the function GT(X) is concentrated in the ball 
1-Х" | ^ r, from assertions 2 and 3 of Lemma 4.1 we derive the following bound: 

J GTb - Y)\/(7) - f(Y)\ dY < cltq J Gr(7 - Y)\7 - Y\B dY ^ Cl,qrB, (8.6) 
R' R» 

where В = 1 for / > 1, q ^ 1 and В = £z^- for / = 1, q > 1. Let us substitute bound 
(8.6) in (8.5) and note that the sum (8.5) is extended over 7 e Г П RS

T. As a result, we 
find 

| В Д , Г)| ^ Cl,qrB det Г N(KS
T, Г) < с,,дтБ[(1 + r ) s + det Г Я(K5

r, Г)]. (8.7) 
Here we have used formulas (1.5) and (1.7). 

Further, we assume that t and r are related as follows: 
100/* 

r = t—ir. (8.8) 
Now in (8.7) we replace the lattice Г by г -1Г, t -* 00 Using (1.8), (8.8), and bound 

(1.11) in Theorem 1.1, we can continue estimates (8.7) as follows: 

р г ( / , Г ! Г ) | $ C | | ^ - 1 0 0 / ' [ l + c ^ r ) i ^ ] < С^{Т)Г'Шз. (8.9) 

The constants in (8.9) depend upon the lattice Г only by means of the invariants det Г 
and NmT. 

We wish to express the error 8(fr,T) in terms of the series (6.1). For this purpose we 
apply the Poisson summation formula (5.4) to the relation (8.3). Taking the definitions 
(2.12) and (8.1) into account, we obtain successively 

*(/г,Г) = - J2 МУ*) = - X G(r7*)/(7*) 
7*€Г*\{0} 7*€Г*\{0} 

= - ( ^ Г £ (Nm7T 'G( r 7 *) [Dlf(X)exp(27n(1\X))dX 

1.(8.10) 

7*6Г*\{0} 

J» 
= ~ ( i r [dXDlf(X)\ E (Nm7*)-/(?(r7*)exP(27rz(7*,X)) 

Now in (8.10) we replace the lalttice Г by г_1Г and, respectively, the dual lattic Г* by 
tT*. Using the definition of the seeirs (6.1) with Q(X) = G(X), we derive from (8.10) 
the following integral representation for the error: 

6(fr,t-lr) = -(^)lS JdXWl(T,P0,tX)Dlf(X), (8.11) 

where 

Р0 = (гО-1Я, Nm P0 = (rtys = t\ b = s№jl-l)>0. (8.12) 

Let us estimate the integral (8.11) for q = 1. Using the definition (6.20), bound (6.22) 
and condition (8.12), we find 

\S(fT,t-lT)\ ^ ( ^ ) ' ' / \D'f(X)\dX s^\W'(T,,Po,X)\ = ( ^ L ) ' V ' ( r , P 0 ) 
K« 

«?с , (Г)г '*1п-Ч (8.13) 
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The constant in (8.13) depends upon the lattice Г only by means of the invariants <let Г 
and Nml\ We recall that | | / | |M = 1. 

Now we can prove bound (2.15) in Theorem 2.1. Substituting bounds (8.13) and 
(8.9) in formula (8.4), we obtain 

\6(f,t-lT)\ ^ с1л(Т)Ггоои + Cl(T)t-ls In'"1 t ̂  с,(Г)Г' ' I n - 1 t. 
This proves bound (2.15). 

Here we postpone our consideration in order to state a result from geometry of 
numbers. Certainly, it would be better to give this result earlier, say in Section 3. However, 
its proof contains a reference to Theorem 1.1, which was proved in Section 7. 

Let a compact body О and a lattice Г be given in Rs. We define v{Q,T) to be the 
minimal number of fundamental sets of the lattice Г needed to cover entirely the body O. 

Lemma 8.1. If Г с Ш3 is an admissible lattice, then we have the bound 
7/(Ж\Г) < с(Г)(1 + t)3, t > 0, (8.14) 

where the constant depends upon the lattice Г only by means of the invariants dct Г and 
NmT. 
Proof. Let Т(Т) be the fundamental set indicated in assertion 3 of Lemma 3.1. The 
translations .7г(Г) + 7, у G Г, cover the whole space R\ Consider the translations f(T) -f 
jjyj — l , . . . , i / ( , which cover entirely the cube tKs. All of them are contained in the 
interior of the cube (t -f-r0)Ks, where r0 = г0(Г) is the radius indicated in assertion 3 of 
Lemma 3.1. On the other hand, each fundamental set /"(Г) + 7 contains a single point 
of the lattice Г. As a result, we have 

u(tK\T) < щ ^ N((t + г0)К',Г) - if^°/ + i?.((t+ т„)Кя,Г). 
It remains to refer to Theorem 1.1. to complete the proof of Lemma 8.1. 

Returning to our consideration, let us estimate the integral (8.11) for q > 1. Using 
Holder's inequality, we obtain 

\6(/г,Г1Г)\< (^) /5[У^7(^)17^]9[/|^Г,Ро^А')|^/^] 

= (^)'Я[ГЯ jwl(T,Pu,X)\kdx]\ (8.15) 

where к = ^ ^ is the conjugate exponent. We recall that \\f\\i,q = 1. 
To evaluate the integral in (8.15), we cover entirely the cube /K4 by the minimal 

number г/(Ж5,Г) of fundamental sets of the lattice Г, and we estimate the integral in 
(8.15) by the sum of integrals over these fundamental sets. Using the definition of the 
norm (6.21) we obtain 

• | i W ' ( r , P o , X ) № ] ^ ( d e t r ) t [ ^ I 2 ] 4 ' t ' ( T , P 0 ) . (8.16) 

If we take bound (6.23) in Lemma 6.3, bound (8.14) in Lemma 8.1, and condition 
(8.12) into account, we derive from (8.15) and (8.16) the bound 

W / r . r ^ l ^ c ^ n r ' M n ^ t . (8.17) 
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The constant in (8.17) depends upon the latice Г only by means of the invariants det Г 
and Nml\ 

Now we can prove bound (2.16) in Theorem 2.1. Substituting bounds (8.17) and 
(8.9) in (8.4) we obtain 

|«(/, t-'HI ^ cj f f(r)r1 0 0" + <д(Г)*-" ln^ 1 1 ^ d,q(T)t-ls ln^ 1 t . 
This proves bound (2.16). 

The proof of Theorem 2.1 is completed. 
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