RUS  ENG
Full version
JOURNALS // Problemy Peredachi Informatsii

Probl. Peredachi Inf., 2012, Volume 48, Issue 4, Pages 88–108 (Mi ppi2097)

Complexity-compression tradeoffs in lossy compression via efficient random codebooks and databases
C. Gioran, I. Kontoyiannis

References

1. Ziv J., Lempel A., “A Universal Algorithm for Sequential Data Compression”, IEEE Trans. Inform. Theory, 23:3 (1977), 337–343  crossref  mathscinet  zmath
2. Ziv J., “Coding Theorems for Individual Sequences”, IEEE Trans. Inform. Theory, 24:4 (1978), 405–412  crossref  mathscinet  zmath
3. Ziv J., Lempel A., “Compression of Individual Sequences by Variable Rate Coding”, IEEE Trans. Inform. Theory, 24:5 (1978), 530–536  crossref  mathscinet  zmath
4. Rissanen J. J., “Generalized Kraft Inequality and Arithmetic Coding”, IBM J. Res. Develop., 20:3 (1976), 198–203  crossref  mathscinet  zmath
5. Pasco R. C., Source Coding Algorithms for Fast Data Compression, Ph. D. Thesis, Dept. Electrical Engineering, Stanford Univ., Stanford, CA, 1976
6. Langdon G. G. (Jr.), “An Introduction to Arithmetic Coding”, IBM J. Res. Develop., 28:2 (1984), 135–149  crossref  mathscinet  zmath
7. Hankerson D., Harris G. A., Johnson P. D. (Jr.), Introduction to Information Theory and Data Compression, CRC Press, Boca Raton, FL, 1998  mathscinet  zmath
8. Bell T. C., Cleary J. G., Witten I. H., Text Compression, Prentice Hall, Englewood Cliffs, NJ, 1990
9. Wiberg N., Loeliger H.-A., Kötter R., “Codes and Iterative Decoding on General Graphs”, Europ. Trans. Telecomm., 6:5 (1995), 513–525  crossref
10. Mackay D. J. C., Neal R. M., “Good Codes Based on Very Sparse Matrices”, Cryptography and Coding, Proc. 5th IMA Conf. (Cirencester, UK, December 18–20, 1995), Lect. Notes Comp. Sci., 1025, Springer, Berlin, 1995, 100–111  crossref
11. Sipser M., Spielman D. A., “Expander Codes”, IEEE Trans. Inform. Theory, 42:6, part 1 (1996), 1710–1722  crossref  mathscinet  zmath  isi
12. Mao Y., Banihashemi A., “Design of Good LDPC Codes Using Girth Distribution”, Presented at 2000 IEEE Int. Sympos. on Information Theory (Sorrento, Italy, June 25–30, 2000)
13. Frey B. J., Graphical Models for Machine Learning and Digital Communication, MIT Press, Cambridge, MA, 1998
14. MacKay D. J. C., Information Theory, Inference and Learning Algorithms, Cambridge Univ. Press, New York, 2003  mathscinet  zmath  adsnasa
15. Richardson T., Urbanke R., Modern Coding Theory, Cambridge Univ. Press, Cambridge, UK, 2008  mathscinet  zmath
16. Berger T., Rate Distortion Theory: A Mathematical Basis for Data Compression, Prentice-Hall, Englewood Cliffs, NJ, 1971  mathscinet
17. Shannon C. E., “Coding Theorems for a Discrete Source with a Fidelity Criterion”, IRE Nat. Conv. Rec., 7:4 (1959), 142–163  mathscinet; Reprinted in: Key Papers in the Development of Information Theory, IEEE Press, New York, 1974, 102–111  mathscinet
18. Kieffer J. C., “A Survey of the Theory of Source Coding with a Fidelity Criterion”, IEEE Trans. Inform. Theory, 39:5 (1993), 1473–1490  crossref  mathscinet  zmath  isi
19. Ziv J., “Coding of Sources with Unknown Statistics. II. Distortion Relative to a Fidelity Criterion”, IEEE Trans. Inform. Theory, 18:3 (1972), 389–394  crossref  mathscinet  zmath
20. Neuhoff R. M., Gray D. L., Davisson L. D., “Fixed Rate Universal Block Source Coding with a Fidelity Criterion”, IEEE Trans. Inform. Theory, 21:5 (1975), 511–523  crossref  mathscinet  zmath
21. Ziv J., “Distortion-Rate Theory for Individual Sequences”, IEEE Trans. Inform. Theory, 26:2 (1980), 137–143  crossref  mathscinet  zmath  isi
22. Ornstein D., Shields P. C., “Universal Almost Sure Data Compression”, Ann. Probab., 18:2 (1990), 441–452  crossref  mathscinet  zmath  isi
23. Muramatsu J., Kanaya F., “Distortion-Complexity and Rate-Distortion Function”, IEICE Trans. Fundamentals, E77-A:8 (1994), 1224–1229
24. Zhang Z., Wei V. K., “An On-line Universal Lossy Data Compression Algorithm via Continuous Codebook Refinement. I. Basic Results”, IEEE Trans. Inform. Theory, 42:3 (1996), 803–821  crossref  mathscinet  zmath  isi
25. Zhang Z., Yang E.-H., “An On-line Universal Lossy Data Compression Algorithm via Continuous Codebook Refinement. II. Optimality for Phi-Mixing Models”, IEEE Trans. Inform. Theory, 42:3 (1996), 822–836  crossref  mathscinet  zmath  isi
26. Yang E., Kieffer J., “Simple Universal Lossy Data Compression Schemes Derived from the Lempel–Ziv Algorithm”, IEEE Trans. Inform. Theory, 42:1 (1996), 239–245  crossref  zmath  isi
27. Yang E.-H., Zhang Z., Berger T., “Fixed-Slope Universal Lossy Data Compression”, IEEE Trans. Inform. Theory, 43:5 (1997), 1465–1476  crossref  mathscinet  zmath  isi
28. Gersho A., Gray R. M., Vector Quantization and Signal Compression, Kluwer Acad. Publ., Boston, 1992  zmath
29. Linder T., Lugosi G., Zeger K., “Rates of Convergence in the Source Coding Theorem, in Empirical Quantizer Design, and in Universal Lossy Source Coding”, IEEE Trans. Inform. Theory, 40:6 (1994), 1728–1740  crossref  mathscinet  zmath  isi
30. Chou P. A., Effros M., Gray R. M., “A Vector Quantization Approach to Universal Noiseless Coding and Quantizations”, IEEE Trans. Inform. Theory, 42:4 (1996), 1109–1138  crossref  zmath  isi
31. Gray R. M., Neuhoff D. L., “Quantization”, IEEE Trans. Inform. Theory, 44:6 (1998), 2325–2383  crossref  mathscinet  zmath  isi
32. Morita H., Kobayashi K., “An Extension of LZW Coding Algorithm to Source Coding Subject to a Fidelity Criterion”, Proc. 4th Joint Swedish–Soviet Int. Workshop on Information Theory (Gotland, Sweden, 1989), 105–109
33. Steinberg Y., Gutman M., “An Algorithm for Source Coding Subject to a Fidelity Criterion, Based upon String Matching”, IEEE Trans. Inform. Theory, 39:3 (1993), 877–886  crossref  mathscinet  zmath  isi
34. Zamir R., Rose K., “Natural Type Selection in Adaptive Lossy Compression”, IEEE Trans. Inform. Theory, 47:1 (2001), 99–111  crossref  mathscinet  zmath  isi
35. Łuczak T., Szpankowski W., “A Suboptimal Lossy Data Compression Algorithm Based on Approximate Pattern Matching”, IEEE Trans. Inform. Theory, 43:5 (1997), 1439–1451  crossref  mathscinet  isi
36. Arnaud D., Szpankowski W., “Pattern Matching Image Compression with Prediction Loop: Preliminary Experimental Results”, Proc. 1997 Data Compression Conf., DCC'97 (Snowbird, UT, March 25–27, 1997), IEEE Comp. Soc. Press, Los Alamitos, CA, 1997, 420
37. Yang E.-H., Kieffer J. C., “On the Performance of Data Compression Algorithms Based upon String Matching”, IEEE Trans. Inform. Theory, 44:1 (1998), 47–65  crossref  mathscinet  zmath  isi
38. Atallah M., Génin Y., Szpankowski W., “Pattern Matching Image Compression: Algorithmic and Empirical Results”, IEEE Trans. Pattern Anal. Mach. Intell., 21:7 (1999), 618–627  crossref
39. Dembo A., Kontoyiannis I., “The Asymptotics of Waiting Times between Stationary Processes, Allowing Distortion”, Ann. Appl. Probab., 9:2 (1999), 413–429  crossref  mathscinet  zmath  isi
40. Kontoyiannis I., “An Implementable Lossy Version of the Lempel–Ziv Algorithm. I. Optimality for Memoryless Sources”, IEEE Trans. Inform. Theory, 45:7 (1999), 2293–2305  crossref  mathscinet  zmath  isi
41. Alzina M., Szpankowski W., Grama A., “2D-Pattern Matching Image and Video Compression: Theory, Algorithms, and Experiments”, IEEE Trans. Image Process, 11:3 (2002), 318–331  crossref  mathscinet  adsnasa  isi
42. Matsunaga Y., Yamamoto H., “A Coding Theorem for Lossy Data Compression by LDPC Codes”, IEEE Trans. Inform. Theory, 49:9 (2003), 2225–2229  crossref  mathscinet  isi
43. Miyake S., “Lossy Data Compression over $Z_q$ by LDPC Code”, Proc. 2006 IEEE Int. Sympos. on Information Theory, ISIT'2006 (Seattle, WA, USA, July 9–14, 2006), 813–816
44. Martinian E., Wainwright M., “Low Density Codes Achieve the Rate-Distortion Bound”, Proc. 2006 Data Compression Conf., DCC'2006 (Snowbird, UT, March 28–30, 2006), IEEE Comp. Soc. Press, Los Alamitos, CA, 2006, 153–162
45. Wainwright M. J., Maneva E., “Lossy Source Encoding via Message-Passing and Decimation over Generalized Codewords of LDGM Codes”, Proc. 2005 IEEE Int. Sympos. on Information Theory, ISIT'2005 (Adelaide, Australia, September 4–9, 2005), 1493–1497
46. Ciliberti S., Mézard K., Zecchina R., “Message Passing Algorithms for Non-linear Nodes and Data Compression”, ComPlexUs, 3:1–3 (2006), 58–65  crossref
47. Rissanen J., Tabus I., “Rate-Distortion without Random Codebooks”, Festschrift in Honor of Jaakko Astola on the Occasion of His 60th Birthday, TICSP, Tampere, Finland, 2009, 79–86
48. Gupta A., Verdú S., “Nonlinear Sparse-Graph Codes for Lossy Compression”, IEEE Trans. Inform. Theory, 55:5 (2009), 1961–1975  crossref  mathscinet  isi
49. Jalali S., Weissman T., “Rate Distortion Coding of Discrete Sources via Markov Chain Monte Carlo”, Proc. 2008 IEEE Int. Sympos. on Information Theory, ISIT'2008 (Toronto, Canada, July 6–11, 2008), 852–856
50. Jalali S., Montanari A., Weissman T., “An Implementable Scheme for Universal Lossy Compression of Discrete Markov Sources”, Proc. 2009 Data Compression Conf., DCC'2009 (Snowbird, UT, March 16–18, 2009), IEEE Comp. Soc. Press, Los Alamitos, CA, 2009, 292–301  crossref
51. Gupta A., Verdú S., Weissman T., “Rate-Distortion in Near-Linear Time”, Proc. 2008 IEEE Int. Sympos. on Information Theory, ISIT'2008 (Toronto, Canada, July 6–11, 2008), 847–851
52. Gupta A., Verdu S., Vaissman Ts., “Dostizhimye kompromissy mezhdu slozhnostyu i effektivnostyu pri szhatii dannykh s poteryami”, Probl. peredachi inform., 48:4 (2012), 62–87  mathnet
53. Jelinek F., “Tree Encoding of Memoryless Time-Discrete Sources with a Fidelity Criterion”, IEEE Trans. Inform. Theory, 15:5 (1969), 584–590  crossref  mathscinet  zmath
54. Anderson J. B., Jelinek F., “A 2-Cycle Algorithm for Source Coding with a Fidelity Criterion”, IEEE Trans. Inform. Theory, 19:1 (1973), 77–92  crossref  mathscinet  zmath
55. Viterbi A. J., Omura J. K., “Trellis Encoding of Memoryless Discrete-Time Sources with a Fidelity Criterion”, IEEE Trans. Inform. Theory, 20:3 (1974), 325–332  crossref  mathscinet  zmath
56. Gray R. M., “Time-Invariant Trellis Encoding of Ergodic Discrete-Time Sources with a Fidelity Criterion”, IEEE Trans. Inform. Theory, 23:1 (1977), 71–83  crossref  mathscinet  zmath
57. Marcellin M. W., Fischer T. R., “Trellis Coded Quantization of Memoryless and Gauss–Markov Sources”, IEEE Trans. Commun., 38:1 (1990), 82–93  crossref  mathscinet  isi
58. van der Vleuten R. J., Weber J. H., “Construction and Evaluation of Trellis-Coded Quantizers for Memoryless Sources”, IEEE Trans. Inform. Theory, 41:3 (1995), 853–859  crossref  zmath  isi
59. Cover T. M., Thomas J. A., Elements of Information Theory, John Wiley, New York, 2006  mathscinet  zmath
60. Dembo A., Kontoyiannis I., “Source Coding, Large Deviations, and Approximate Pattern Matching”, IEEE Trans. Inform. Theory, 48:6 (2002), 1590–1615  crossref  mathscinet  zmath  isi
61. Wyner A. D., Ziv J., “Fixed Data Base Version of the Lempel–Ziv Data Compression Algorithm”, IEEE Trans. Inform. Theory, 37:3 (1991), 878–880  crossref  mathscinet  isi
62. Crochemore M., Rytter W., Text Algorithms, Oxford Univ. Press, New York, 1994  mathscinet  zmath
63. Crochemore M., Lecroq T., “Pattern-Matching and Text-Compression Algorithms”, ACM Comput. Surv., 28:1 (1996), 39–41  crossref  isi
64. Kontoyiannis I., “Pointwise Redundancy in Lossy Data Compression and Universal Lossy Data Compression”, IEEE Trans. Inform. Theory, 46:1 (2000), 136–152  crossref  mathscinet  zmath  isi
65. Csiszár I., Körner J., Information Theory: Coding Theorems for Discrete Memoryless Systems, Academic Press, New York, 1981  mathscinet  zmath


© Steklov Math. Inst. of RAS, 2024