|
Wireless monitoring of the biological object state at microwave frequencies: A review I. B. Vendik, O. G. Vendik, D. S. Kozlov, I. V. Munina, V. V. Pleskachev, A. S. Rusakov, P. A. Tural’chuk
|
3 |
|
Theoretical and Mathematical Physics
|
|
Electroelastic field of a sphere located in the vicinity of a plane piezoelectric surface A. S. Starkov, O. V. Pakhomov, I. A. Starkov
|
27 |
|
Atomic and molecular physics
|
|
Effect of inelastic and elastic energy losses of Xe ions on the evolution of hydrogen blisters in silicon V. F. Reutov, S. N. Dmitriev, A. S. Sokhatskii, A. G. Zaluzhny
|
32 |
|
Gases and Fluids
|
|
Linear (in oscillation dimensionless amplitude) interaction between the modes of a nonspherical charged drop in an external electrostatic field S. O. Shiryaeva, N. A. Petrushov, A. I. Grigor'ev
|
37 |
|
Electrostatic stability of the liquid layer surface on a hard wettable cylindrical substrate S. O. Shiryaeva, D. E. Lesnugina, N. A. Petrushov, A. I. Grigor'ev
|
45 |
|
Plasma
|
|
Characteristics of a localized gas discharge A. V. Abramov, E. A. Pankratova, I. S. Surovtsev, D. Yu. Zolototrubov
|
50 |
|
Stimulation of high-frequency breakdown of gas in Uragan-3M torsatron by runaway electrons I. K. Tarasov, M. I. Tarasov, D. A. Sitnikov, V. K. Pashnev, M. A. Lytova
|
55 |
|
Magnetron source of accelerated plasma flow L. P. Veresov, O. L. Veresov
|
61 |
|
Temperature and current density distributions at spark plasma sintering of inhomogeneous samples L. P. Bulat, A. V. Novotelnova, D. A. Pshenay-Severin, V. B. Osvenskii, A. I. Sorokin, A. V. Asach, A. S. Tukmakova
|
70 |
|
Energy model of glow discharge nitriding I. M. Pastukh
|
78 |
|
Solids
|
|
Influence of the reversible $\alpha$–$\varepsilon$ phase transition and preliminary shock compression on the spall strength of armco iron G. V. Garkushin, N. S. Naumova, S. A. Atroshenko, S. V. Razorenov
|
86 |
|
Physical science of materials
|
|
Effect of growth mechanisms on the deformation of a unit cell and polarization reversal in barium–strontium titanate heterostructures on magnesium oxide V. M. Mukhortov, Yu. I. Golovko, S. V. Birukov, A. S. Anokhin, Yu. I. Yuzyuk
|
93 |
|
Structure–phase transformations and physical properties of ferritic–martensitic 12% chromium steels EK-181 and ChS-139 V. M. Chernov, M. V. Leont'eva-Smirnova, M. M. Potapenko, N. A. Polekhina, I. Yu. Litovchenko, A. N. Tyumentsev, E. G. Astafurova, L. P. Khromova
|
99 |
|
Physics of nanostructures
|
|
Plasmachemical synthesis and basic properties of CoFe$_{2}$O$_{4}$ magnetic nanoparticles A. V. Ushakov, I. V. Karpov, A. A. Lepeshev, L. Yu. Fedorov, A. A. Shaikhadinov
|
105 |
|
Distribution of laser-induced dendrites on a steel surface D. N. Antonov, A. A. Burtsev, O. Ya. Butkovskiy
|
110 |
|
Electrophysics, electron and ion beams, physics of accelerators
|
|
Optimized electron–optical system of a static mass-spectrometer for simultaneous isotopic and chemical analysis L. N. Gall', S. V. Masyukevich, V. D. Sachenko, N. R. Gall'
|
116 |
|
Reduction of the beam emittance in the charged-particle storage rings with the help of periodic magnetic wigglers A. V. Bogomyagkov, K. Yu. Kariukina, E. B. Levichev
|
121 |
|
Optical Instruments and Experiment Technique
|
|
Effect of strong magnetic fields on gas adsorption S. I. Krivosheev, G. A. Shneerson, V. V. Platonov, V. D. Selemir, O. M. Tatsenko, A. V. Filippov, E. A. Bychkova
|
127 |
|
Brief Communications
|
|
Acousto-optic modulator of depolarized laser radiation on the paratellurite crystal S. N. Antonov
|
132 |
|
Acousto-optic deflector of depolarized laser radiation S. N. Antonov
|
136 |
|
Exact solutions for the shape of a 2D conducting drop moving through a dielectric medium at an angle to the external electric field N. M. Zubarev, O. V. Zubareva
|
140 |
|
Electrical conductivity distribution during detonation of a TATB-based explosive N. P. Satonkina, I. A. Rubtsov
|
144 |
|
Formation of electric discharges above the free surface of a current-carrying liquid I. B. Klement'eva, M. È. Pinchuk, I. O. Teplyakov
|
148 |
|
Influence of quantum effects on the parameters of a cold cathode with carbon nanotubes O. E. Glukhova, A. S. Kolesnikova, M. M. Slepchenkov
|
151 |
|
Application of the solution–melt method for obtaining composite materials consisting of a metal matrix and CrSi$_2$ microcrystals F. Yu. Solomkin, S. V. Novikov, N. F. Kartenko, A. S. Kolosova, D. A. Pshenay-Severin, O. N. Uryupin, A. Yu. Samunin, G. N. Isachenko
|
155 |