RUS  ENG
Full version
JOURNALS // Trudy Instituta Matematiki i Mekhaniki UrO RAN // Archive

2008, Volume 14, Number 2

| General information | Contents |


Trudy Instituta Matematiki i Mekhaniki UrO RAN


Mathematical Programming
Ivan Ivanovich Eremin (photo)
On the 75th birthday of Ivan Ivanovich Eremin
3
Saddle problem and optimization problem as an integrated system
A. S. Antipin
5
Opposite problems and dual regularization in linear programming
N. N. Astaf'ev
16
Asymptotically optimal algorithm for finding one and two edge-disjoint traveling salesman routes of maximal weight in Euclidean space
E. Kh. Gimadi
23
Finding the projection of a given point on the set of solutions of a linear programming problem
A. I. Golikov, Yu. G. Evtushenko
33
One approach to solving a discrete production planning problem with interval data
M. V. Devyaterikova, A. A. Kolokolov, A. P. Kolosov
48
Author’s results on Mathematical Programming in retrospect
I. I. Eremin
58
Direct newton method for a linear problem of semidefinite programming
V. G. Zhadan
67
Off-line detection of a quasi-periodically recurring fragment in a numerical sequence
A. V. Kel'manov
81
Combinatorial optimization problems related to the committee polyhedral separability of finite sets
V. D. Mazurov, M. Yu. Khachai, M. I. Poberii
89
One modification of the logarithmic barrier function method in linear and convex programming
L. D. Popov
103
Barrier function method and correction algorithms for improper convex programming problems
V. D. Skarin
115
Extremal bottleneck routing problem with constraints in the form of precedence conditions
A. A. Chentsov, A. G. Chentsov
129

Algebra and Topology
On irreducible characters of the group $S_n$ that are semiproportional on $A_n$ or $S_n\setminus A_n$. I
V. A. Belonogov
143
On finite-to-one open mappings
N. V. Velichko
164
Minimal embeddings of topological spaces into the real line
M. A. Patrakeev
174

Differential equations
Construction of a minimax solution for an eikonal-type equation
P. D. Lebedev, A. A. Uspenskii, V. N. Ushakov
182
Minimax risk (regret) strategy for one class of control problems under dynamic disturbances
D. A. Serkov
192


© Steklov Math. Inst. of RAS, 2025