Unitary representations of the classical groups
This book is cited in the following Math-Net.Ru publications:
- On representations of groups and algebras in spaces with indefinite metric
E. V. Kissin, V. S. Shulman
CMFD, 2021, 67:2, 295–315 - Deformation of the Poisson structure of a point particle due to gravitational back reaction
D. A. Lyozin, A. N. Starodubtsev
Zap. Nauchn. Sem. POMI, 2021, 509, 153–175 - Mellin–Barnes representation for $SL(2, \mathbb{C})$ magnet
P. A. Valinevich
Zap. Nauchn. Sem. POMI, 2020, 494, 125–143 - Construction of the Gelfand–Tsetlin basis for unitary principal
series representations of the algebra $sl_n(\mathbb C)$
P. A. Valinevich
TMF, 2019, 198:1, 162–174 - The $6j$-symbols for the $SL(2,\mathbb C)$ group
S. È. Derkachev, V. P. Spiridonov
TMF, 2019, 198:1, 32–53 - Completeness of the $3j$-symbols for $SL(2,\mathbb C)$ group
N. M. Belousov, S. È. Derkachev
Zap. Nauchn. Sem. POMI, 2019, 487, 40–52 - SOS-representation for the $SL(2,\mathbb C)$-invariant $R$-operator and Feynman diagrams
P. A. Valinevich, S. E. Derkachov, A. P. Isaev
Zap. Nauchn. Sem. POMI, 2017, 465, 82–104 - Construction of eigenfunctions for a system of quantum minors of the monodromy matrix for an $SL(n,\mathbb C)$-invariant spin chain
P. A. Valinevich, S. È. Derkachev, P. P. Kulish, E. M. Uvarov
TMF, 2016, 189:2, 149–175 - Young tableaux and stratification of space of complex square matrices
M. V. Babich
Zap. Nauchn. Sem. POMI, 2015, 433, 41–64 - On birational Darboux coordinates on coadjoint orbits of classical complex Lie groups
M. V. Babich
Zap. Nauchn. Sem. POMI, 2015, 432, 36–57 - On rational symplectic parametrization of the coadjoint orbit of $\mathrm{GL}(N)$. Diagonalizable case
M. V. Babich, S. E. Derkachov
Algebra i Analiz, 2010, 22:3, 16–31 - Jordan–Schwinger Representations and Factorised Yang–Baxter Operators
David Karakhanyan, Roland Kirschner
SIGMA, 2010, 6, 29–16 - Factorization of the $R$-matrix for the quantum algebra $U_q(s\ell_n)$
P. A. Valinevich
Zap. Nauchn. Sem. POMI, 2010, 374, 92–106 - General solution of the Yung–Baxter equation with symmetry group $\mathrm{SL}(\mathrm n,\mathbb C)$
S. E. Derkachev, A. N. Manashov
Algebra i Analiz, 2009, 21:4, 1–94 - $K$-Finite Matrix Elements of Irreducible Harish-Chandra Modules are Hypergeometric
Yu. A. Neretin
Funktsional. Anal. i Prilozhen., 2007, 41:4, 60–69 - Topological Transformation Groups of Manifolds over Non-Archimedean Fields, Their Representations, and Quasi-Invariant Measures, II
S. V. Lyudkovskii
CMFD, 2006, 18, 5–100 - $\mathcal R$-Matrix and Baxter $\mathcal Q$-Operators for the Noncompact $\mathrm{SL}(N,\mathbb C)$ Invariant Spin Chain
Sergey É Derkachov, Alexander N. Manashov
SIGMA, 2006, 2, 84–20 - Notes on Stein–Sahi representations and some problems of non-$L^2$-harmonic analysis
Yu. A. Neretin
Zap. Nauchn. Sem. POMI, 2006, 331, 125–169 - Rayleigh triangles and non-matrix interpolation of matrix beta integrals
Yu. A. Neretin
Mat. Sb., 2003, 194:4, 49–74 - The action of an overalgebra on the Plancherel decomposition and shift operators in the imaginary direction
Yu. A. Neretin
Izv. RAN. Ser. Mat., 2002, 66:5, 171–182 - Matrix balls, radial analysis of Berezin kernels, and hypergeometric determinants
Yu. A. Neretin
Mosc. Math. J., 2001, 1:2, 157–220 - A certain module over the binary-Lie central extension $\mathsf{jl_2}(\mathbb C)$ of the double $\mathsf{sl_2}(\mathbb C)+\mathsf{sl_2}(\mathbb C)$
D. V. Yur'ev
Uspekhi Mat. Nauk, 1991, 46:6(282), 223–224 - A complete classification of the representations of $\mathrm{GL}(\infty)$ containing the identity representation of the unitary subgroup
N. I. Nessonov
Mat. Sb. (N.S.), 1986, 130(172):2(6), 131–150 - The Toda chain as a reduced system
M. A. Olshanetsky, A. M. Perelomov
TMF, 1980, 45:1, 3–18 - Intertwining operators and complementary series in the class of representations induced from parabolic subgroups of the general linear group over a locally compact division algebra
G. I. Olshanskii
Mat. Sb. (N.S.), 1974, 93(135):2, 218–253 - The matrix Riccati differential equation and the semi-group of linear fractional transformations
M. H. Zakhar-Itkin
Uspekhi Mat. Nauk, 1973, 28:3(171), 83–120 - On a class of quasihomogeneous affine varieties
È. B. Vinberg, V. L. Popov
Izv. Akad. Nauk SSSR Ser. Mat., 1972, 36:4, 749–764 - A decomposition of the tensor product of certain representations of the group $SL(n,C)$ into irreducible representations
È. V. Kissin
Uspekhi Mat. Nauk, 1971, 26:1(157), 225–226 - Plancherel measure of the principal continuous series of unitary representations of $U(p, q)$
A. N. Leznov, M. V. Saveliev
TMF, 1971, 8:2, 161–174 - Representations of noncompact symplectic groups
A. N. Leznov, I. A. Fedoseev
TMF, 1971, 7:3, 298–317 - Description of the completely irreducible representations of a complex semisimple Lie group
D. P. Zhelobenko, M. A. Naimark
Izv. Akad. Nauk SSSR Ser. Mat., 1970, 34:1, 57–82 - Representations of the full linear group over a finite field
S. I. Gel'fand
Mat. Sb. (N.S.), 1970, 83(125):1(9), 15–41 - Characters of the irreducible representations of the pseudounitary group $U(p,q)$. II
A. N. Leznov, M. V. Saveliev
TMF, 1970, 4:3, 310–321 - Harmonic analysis of functions on semisimple Lie groups. II
D. P. Zhelobenko
Izv. Akad. Nauk SSSR Ser. Mat., 1969, 33:6, 1255–1295 - Operational calculus on a complex semisimple Lie group
D. P. Zhelobenko
Izv. Akad. Nauk SSSR Ser. Mat., 1969, 33:5, 931–973 - The analysis of irreducibility in the class of elementary representations of a complex semisimple Lie group
D. P. Zhelobenko
Izv. Akad. Nauk SSSR Ser. Mat., 1968, 32:1, 108–133
- Mathematical works of D. P. Zhelobenko
Yu. A. Neretin, S. M. Khoroshkin
Uspekhi Mat. Nauk, 2009, 64:1(385), 178–188 - Teacher about His Disciple. Four Reviews by A. N. Kolmogorov on the Works of I. M. Gelfand (On the 90th Birthday of Izrail Moiseevich Gelfand)
Funktsional. Anal. i Prilozhen., 2003, 37:4, 3–12 - Teacher about His Disciple. Four Reviews by A. N. Kolmogorov on the Works of I. M. Gelfand (On the 90th Birthday of Izrail Moiseevich Gelfand)
Funktsional. Anal. i Prilozhen., 2003, 37:4, 3–12 - Teacher about His Disciple. Four Reviews by A. N. Kolmogorov on the Works of I. M. Gelfand (On the 90th Birthday of Izrail Moiseevich Gelfand)
Funktsional. Anal. i Prilozhen., 2003, 37:4, 3–12 - The work of I. M. Gel'fand on functional analysis, algebra and topology
S. G. Gindikin, A. A. Kirillov, D. B. Fuchs
Uspekhi Mat. Nauk, 1974, 29:1(175), 195–223
© , 2025